-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutils.py
87 lines (68 loc) · 2.6 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
import torch
import bpe
from typing import List
from abc import ABC, abstractmethod
class TextProcess(ABC):
@abstractmethod
def text2int(self, data):
pass
@abstractmethod
def int2text(self, data):
pass
def __init__(self):
self.blank_label = 0
def decode(self, arg_maxes: torch.Tensor):
"""
decode greedy with collapsed repeat
"""
decode = []
for i, index in enumerate(arg_maxes):
if index != self.blank_label:
if i != 0 and index == arg_maxes[i - 1]:
continue
decode.append(index.item())
return self.int2text(decode)
class CharacterBased(TextProcess):
aux_vocab = ["<p>", "<s>", "<e>", " ", ":", "'"]
origin_list_vocab = {
"en": aux_vocab + list("abcdefghijklmnopqrstuvwxyz"),
"vi": aux_vocab
+ list(
"abcdefghijklmnopqrstuvwxyzàáâãèéêìíòóôõùúýăđĩũơưạảấầẩẫậắằẳẵặẹẻẽếềểễệỉịọỏốồổỗộớờởỡợụủứừửữựỳỵỷỹ"
),
}
origin_vocab = {
lang: dict(zip(vocab, range(len(vocab))))
for lang, vocab in origin_list_vocab.items()
}
def __init__(self, lang: str = "vi"):
super().__init__()
self.lang = lang
assert self.lang in ["vi", "en"], "Language not found"
self.vocab = self.origin_vocab[lang]
self.list_vocab = self.origin_list_vocab[lang]
def text2int(self, s: str) -> torch.Tensor:
return torch.Tensor([self.vocab[i] for i in s.lower()])
def int2text(self, s: torch.Tensor) -> str:
return "".join([self.list_vocab[i] for i in s if i > 2])
class BPEBased(TextProcess):
def __init__(self, **kwargs):
super().__init__()
self.encoder = bpe.Encoder(**kwargs)
def fit(self, text_corpus: str = ""):
self.encoder.fit(text_corpus)
self.blank = self.encoder.word_vocab["__blank"]
def tokenize(self, text: str):
return self.encoder.tokenize(text)
def text2int(self, text: str):
if isinstance(text, str):
text = [text]
return torch.LongTensor(next(self.encoder.transform(text)))
def int2text(self, idx: List[int]):
if isinstance(idx, torch.Tensor):
idx = idx.tolist()
idx = [[i for i in idx if i not in [0, 1, 2]]] # 0, 1, 2 is not use
return next(self.encoder.inverse_transform(idx))
def load(self, in_path):
self.encoder = self.encoder.load(in_path)
self.blank = self.encoder.word_vocab["__blank"]