-
Notifications
You must be signed in to change notification settings - Fork 34
/
Copy pathk-powerful_numbers.pl
executable file
·69 lines (52 loc) · 2.27 KB
/
k-powerful_numbers.pl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
#!/usr/bin/perl
# Daniel "Trizen" Șuteu
# Date: 11 February 2020
# https://github.com/trizen
# Fast recursive algorithm for generating all the k-powerful numbers <= n.
# A positive integer n is considered k-powerful, if for every prime p that divides n, so does p^k.
# Example:
# 2-powerful = a^2 * b^3, for a,b >= 1
# 3-powerful = a^3 * b^4 * c^5, for a,b,c >= 1
# 4-powerful = a^4 * b^5 * c^6 * d^7, for a,b,c,d >= 1
# OEIS:
# https://oeis.org/A001694 -- 2-powerful numbers
# https://oeis.org/A036966 -- 3-powerful numbers
# https://oeis.org/A036967 -- 4-powerful numbers
# https://oeis.org/A069492 -- 5-powerful numbers
# https://oeis.org/A069493 -- 6-powerful numbers
use 5.020;
use warnings;
use ntheory qw(:all);
use experimental qw(signatures);
sub powerful_numbers ($n, $k = 2) {
my @powerful;
sub ($m, $r) {
if ($r < $k) {
push @powerful, $m;
return;
}
foreach my $v (1 .. rootint(divint($n, $m), $r)) {
if ($r > $k) {
gcd($m, $v) == 1 or next;
is_square_free($v) or next;
}
__SUB__->(mulint($m, powint($v, $r)), $r - 1);
}
}
->(1, 2 * $k - 1);
sort { $a <=> $b } @powerful;
}
foreach my $k (1 .. 10) {
printf("%2d-powerful: %s, ...\n", $k, join(", ", powerful_numbers(5**$k, $k)));
}
__END__
1-powerful: 1, 2, 3, 4, 5, ...
2-powerful: 1, 4, 8, 9, 16, 25, ...
3-powerful: 1, 8, 16, 27, 32, 64, 81, 125, ...
4-powerful: 1, 16, 32, 64, 81, 128, 243, 256, 512, 625, ...
5-powerful: 1, 32, 64, 128, 243, 256, 512, 729, 1024, 2048, 2187, 3125, ...
6-powerful: 1, 64, 128, 256, 512, 729, 1024, 2048, 2187, 4096, 6561, 8192, 15625, ...
7-powerful: 1, 128, 256, 512, 1024, 2048, 2187, 4096, 6561, 8192, 16384, 19683, 32768, 59049, 65536, 78125, ...
8-powerful: 1, 256, 512, 1024, 2048, 4096, 6561, 8192, 16384, 19683, 32768, 59049, 65536, 131072, 177147, 262144, 390625, ...
9-powerful: 1, 512, 1024, 2048, 4096, 8192, 16384, 19683, 32768, 59049, 65536, 131072, 177147, 262144, 524288, 531441, 1048576, 1594323, 1953125, ...
10-powerful: 1, 1024, 2048, 4096, 8192, 16384, 32768, 59049, 65536, 131072, 177147, 262144, 524288, 531441, 1048576, 1594323, 2097152, 4194304, 4782969, 8388608, 9765625, ...