-
Notifications
You must be signed in to change notification settings - Fork 34
/
Copy pathcontinued_fractions_for_e.pl
executable file
·131 lines (105 loc) · 2.55 KB
/
continued_fractions_for_e.pl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
#!/usr/bin/perl
# Author: Daniel "Trizen" Șuteu
# License: GPLv3
# Date: 10 May 2016
# Edit: 14 July 2017
# Website: https://github.com/trizen
# Continued fractions for the "e" mathematical constant.
use 5.010;
use strict;
sub e_1 {
my ($i, $limit) = @_;
$limit > 0 ? ($i / ($i + e_1($i + 1, $limit - 1))) : 0;
}
sub e_2 {
my ($i, $limit) = @_;
$limit > 0 ? 1 / (1 + 1 / (2 * $i + 1 / (1 + e_2($i + 1, $limit - 1)))) : 0;
}
sub e_3 {
my ($i, $limit) = @_;
$limit > 0 ? (1 / (2 * $i + 1 + e_3($i + 1, $limit - 1))) : 0;
}
sub e_4 {
my ($i, $n) = @_;
return 0 if $n >= $i;
1 / (
1 + 1 / (
1 + 1 / (
(3 * $n) + 1 / (
(12 * $n + 6) + 1 / (
(3 * $n + 2) + e_4($i, $n + 1)
)
)
)
)
);
}
sub e_5 {
my ($i, $n) = @_;
return 0 if $n >= $i;
1 / (
3 + 1 / (
2*$n + 1 / (
3 + 1 / (
1 + 1 / (
2*$n + 1 / (
1 + e_5($i, $n + 1)
)
)
)
)
)
);
}
sub e_6 {
my ($i, $n) = @_;
return 0 if $n >= $i;
2 / (
8*($n+1) - 2 + 2 / (
4*($n+1) + 1 + e_6($i, $n+1)
)
);
}
sub e_7 {
my ($i, $n) = @_;
return 0 if $n >= $i;
8 / (
16*$n + 4 + 8 / (
8*($n+1) - 2 + e_7($i, $n+1)
)
);
}
sub e_8 {
my ($i, $n) = @_;
return 0 if $n >= $i;
1 / (
4*($n-1) + 1 + 1 / (
1 + 1/(
1 + e_8($i, $n+1)
)
)
);
}
sub e_9 {
my ($i, $n) = @_;
return 0 if $n >= $i;
1/(
2 + 1/(
4*$n + 1 + 1/(
-2 + 1/ (
-4*$n - 3 + e_9($i, $n+1)
)
)
)
)
}
my $r = 100; # number of repetitions
say 1 + 1 / e_1(1, $r); # good convergence
say 2 + e_2(1, $r); # very fast convergence
say sqrt(1 + 2 / e_3(1, $r)); # very fast convergence
say sqrt(7 + 1 / (2 + (e_4($r, 1)))); # extremely fast convergence (best)
say ((5 + 1/(2 + e_5($r, 1)))/2); # extremely fast convergence
say sqrt(7 + 2/(5 + e_6($r, 1))); # extremely fast convergence
say sqrt(7 + e_7($r, 1)); # very fast convergence
say ((1 + e_8($r, 1))**2); # very fast convergence
say 3 + 1/(-4 + e_9($r, 1)); # extremely fast convergence