-
Notifications
You must be signed in to change notification settings - Fork 34
/
Copy pathbrazilian_primes_constant.pl
executable file
·90 lines (72 loc) · 2.92 KB
/
brazilian_primes_constant.pl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
#!/usr/bin/perl
# Compute the decimal expansion of the sum of reciprocals of Brazilian primes, also called the Brazilian primes constant.
# The constant begins as:
# 0.3317544666
# OEIS sequences:
# https://oeis.org/A085104 (Brazillian primes)
# https://oeis.org/A306759 (Decimal expansion of the sum of reciprocals of Brazilian primes)
use 5.020;
use warnings;
use experimental qw(signatures);
use ntheory qw(:all);
use Math::AnyNum;
sub brazillian_constant ($lim) {
my $N = Math::GMPz->new("$lim");
my $q = Math::GMPq->new(0);
my $z = Math::GMPz->new(0);
my $sum = Math::MPFR::Rmpfr_init2(192);
Math::MPFR::Rmpfr_set_ui($sum, 0, 0);
my %seen;
# The algorithm for generating the Brazillian primes is due to M. F. Hasler.
# See: https://oeis.org/A085104
forprimes {
my $K = $_;
for my $n (2 .. rootint($N - 1, $K - 1)) {
Math::GMPz::Rmpz_ui_pow_ui($z, $n, $K);
Math::GMPz::Rmpz_sub_ui($z, $z, 1);
Math::GMPz::Rmpz_divexact_ui($z, $z, $n - 1);
if (
is_prob_prime(
Math::GMPz::Rmpz_fits_ulong_p($z)
? Math::GMPz::Rmpz_get_ui($z)
: Math::GMPz::Rmpz_get_str($z, 10)
)
) {
# Conjecture: duplicate terms may happen only for t = 2^k-1, for some k
if ((($z + 1) & $z) == 0) {
next if $seen{$z}++;
}
if ($z < $N) {
Math::GMPq::Rmpq_set_ui($q, 1, 1);
Math::GMPq::Rmpq_set_den($q, $z);
Math::MPFR::Rmpfr_add_q($sum, $sum, $q, 0);
}
}
}
} 3, logint($N + 1, 2);
return Math::AnyNum->new($sum);
}
foreach my $n (1 .. 14) {
say "B(10^$n) ~ ", brazillian_constant(Math::GMPz->new(10)**$n)->round(-32);
}
__END__
B(10^1) ~ 0.14285714285714285714285714285714
B(10^2) ~ 0.28899272838682348594073100542184
B(10^3) ~ 0.32290223556269144810843769843366
B(10^4) ~ 0.32952368063536693571523726793301
B(10^5) ~ 0.33121713119461798438057432911381
B(10^6) ~ 0.33160386963492172892306297309503
B(10^7) ~ 0.33171391586547473334091623260371
B(10^8) ~ 0.33174341910781704122196304798802
B(10^9) ~ 0.33175132673949885380067237840723
B(10^10) ~ 0.33175356516689372562521462231951
B(10^11) ~ 0.33175420579318423292974799113059
B(10^12) ~ 0.33175439067722742680152185017303
B(10^13) ~ 0.33175444440331880514669754839817
B(10^14) ~ 0.33175446011369675270545267094599
B(10^15) ~ 0.33175446473544852087966767749508
B(10^16) ~ 0.33175446610148680800864203095541 -- took 1 minute
B(10^17) ~ 0.33175446650734519516960634448563 -- took 4 minutes
B(10^18) ~ 0.33175446662828756863723305575693 -- took 20 minutes
B(10^19) ~ 0.33175446666446018177571079766533 -- took 39 minutes
B(10^20) ~ 0.33175446667530957668020208565143 -- took 5 hours and 23 minutes