-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathheater.c
319 lines (274 loc) · 9.89 KB
/
heater.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
#include "heater.h"
#include <stdlib.h>
#include <avr/eeprom.h>
#include <avr/pgmspace.h>
#include "arduino.h"
#include "debug.h"
#include "temp.h"
#include "crc.h"
#ifndef EXTRUDER
#include "sersendf.h"
#endif
typedef struct {
volatile uint8_t *heater_port;
uint8_t heater_pin;
volatile uint8_t *heater_pwm;
} heater_definition_t;
#undef DEFINE_HEATER
#define DEFINE_HEATER(name, port, pin, pwm) { &(port), (pin), &(pwm) },
static const heater_definition_t heaters[NUM_HEATERS] =
{
#include "config.h"
};
#undef DEFINE_HEATER
// this struct holds the heater PID factors that are stored in the EEPROM during poweroff
struct {
int32_t p_factor;
int32_t i_factor;
int32_t d_factor;
int16_t i_limit;
} heaters_pid[NUM_HEATERS];
// this struct holds the runtime heater data- PID integrator history, temperature history, sanity checker
struct {
int16_t heater_i;
uint16_t temp_history[TH_COUNT];
uint8_t temp_history_pointer;
#ifdef HEATER_SANITY_CHECK
uint16_t sanity_counter;
uint16_t sane_temperature;
#endif
uint8_t heater_output;
} heaters_runtime[NUM_HEATERS];
#define DEFAULT_P 8192
#define DEFAULT_I 512
#define DEFAULT_D 24576
#define DEFAULT_I_LIMIT 384
// this lives in the eeprom so we can save our PID settings for each heater
typedef struct {
int32_t EE_p_factor;
int32_t EE_i_factor;
int32_t EE_d_factor;
int16_t EE_i_limit;
uint16_t crc;
} EE_factor;
EE_factor EEMEM EE_factors[NUM_HEATERS];
void heater_init() {
heater_t i;
// setup pins
for (i = 0; i < NUM_HEATERS; i++) {
*(heaters[i].heater_port) &= ~MASK(heaters[i].heater_pin);
// DDR is always 1 address below PORT. ugly code but saves ram and an extra field in heaters[] which will never be used anywhere but here
*(heaters[i].heater_port - 1) |= MASK(heaters[i].heater_pin);
if (heaters[i].heater_pwm) {
*heaters[i].heater_pwm = 0;
// this is somewhat ugly too, but switch() won't accept pointers for reasons unknown
switch((uint16_t) heaters[i].heater_pwm) {
case (uint16_t) &OCR0A:
TCCR0A |= MASK(COM0A1);
break;
case (uint16_t) &OCR0B:
TCCR0A |= MASK(COM0B1);
break;
case (uint16_t) &OCR2A:
TCCR2A |= MASK(COM2A1);
break;
case (uint16_t) &OCR2B:
TCCR2A |= MASK(COM2B1);
break;
}
}
#ifdef HEATER_SANITY_CHECK
// 0 is a "sane" temperature when we're trying to cool down
heaters_runtime[i].sane_temperature = 0;
#endif
#ifndef BANG_BANG
// read factors from eeprom
heaters_pid[i].p_factor = eeprom_read_dword((uint32_t *) &EE_factors[i].EE_p_factor);
heaters_pid[i].i_factor = eeprom_read_dword((uint32_t *) &EE_factors[i].EE_i_factor);
heaters_pid[i].d_factor = eeprom_read_dword((uint32_t *) &EE_factors[i].EE_d_factor);
heaters_pid[i].i_limit = eeprom_read_word((uint16_t *) &EE_factors[i].EE_i_limit);
// if ((heaters_pid[i].p_factor == 0) && (heaters_pid[i].i_factor == 0) && (heaters_pid[i].d_factor == 0) && (heaters_pid[i].i_limit == 0)) {
if (crc_block(&heaters_pid[i].p_factor, 14) != eeprom_read_word((uint16_t *) &EE_factors[i].crc)) {
heaters_pid[i].p_factor = DEFAULT_P;
heaters_pid[i].i_factor = DEFAULT_I;
heaters_pid[i].d_factor = DEFAULT_D;
heaters_pid[i].i_limit = DEFAULT_I_LIMIT;
}
#endif /* BANG_BANG */
}
}
void heater_save_settings() {
#ifndef BANG_BANG
heater_t i;
for (i = 0; i < NUM_HEATERS; i++) {
eeprom_write_dword((uint32_t *) &EE_factors[i].EE_p_factor, heaters_pid[i].p_factor);
eeprom_write_dword((uint32_t *) &EE_factors[i].EE_i_factor, heaters_pid[i].i_factor);
eeprom_write_dword((uint32_t *) &EE_factors[i].EE_d_factor, heaters_pid[i].d_factor);
eeprom_write_word((uint16_t *) &EE_factors[i].EE_i_limit, heaters_pid[i].i_limit);
eeprom_write_word((uint16_t *) &EE_factors[i].crc, crc_block(&heaters_pid[i].p_factor, 14));
}
#endif /* BANG_BANG */
}
void heater_tick(heater_t h, temp_sensor_t t, uint16_t current_temp, uint16_t target_temp) {
uint8_t pid_output;
#ifndef BANG_BANG
int16_t heater_p;
int16_t heater_d;
int16_t t_error = target_temp - current_temp;
#endif /* BANG_BANG */
if (h >= NUM_HEATERS || t >= NUM_TEMP_SENSORS)
return;
#ifndef BANG_BANG
heaters_runtime[h].temp_history[heaters_runtime[h].temp_history_pointer++] = current_temp;
heaters_runtime[h].temp_history_pointer &= (TH_COUNT - 1);
// PID stuff
// proportional
heater_p = t_error;
// integral
heaters_runtime[h].heater_i += t_error;
// prevent integrator wind-up
if (heaters_runtime[h].heater_i > heaters_pid[h].i_limit)
heaters_runtime[h].heater_i = heaters_pid[h].i_limit;
else if (heaters_runtime[h].heater_i < -heaters_pid[h].i_limit)
heaters_runtime[h].heater_i = -heaters_pid[h].i_limit;
// derivative
// note: D follows temp rather than error so there's no large derivative when the target changes
heater_d = heaters_runtime[h].temp_history[heaters_runtime[h].temp_history_pointer] - current_temp;
// combine factors
int32_t pid_output_intermed = (
(
(((int32_t) heater_p) * heaters_pid[h].p_factor) +
(((int32_t) heaters_runtime[h].heater_i) * heaters_pid[h].i_factor) +
(((int32_t) heater_d) * heaters_pid[h].d_factor)
) / PID_SCALE
);
// rebase and limit factors
if (pid_output_intermed > 255)
pid_output = 255;
else if (pid_output_intermed < 0)
pid_output = 0;
else
pid_output = pid_output_intermed & 0xFF;
#ifdef DEBUG
if (debug_flags & DEBUG_PID)
sersendf_P(PSTR("T{E:%d, P:%d * %ld = %ld / I:%d * %ld = %ld / D:%d * %ld = %ld # O: %ld = %u}\n"), t_error, heater_p, heaters_pid[h].p_factor, (int32_t) heater_p * heaters_pid[h].p_factor / PID_SCALE, heaters_runtime[h].heater_i, heaters_pid[h].i_factor, (int32_t) heaters_runtime[h].heater_i * heaters_pid[h].i_factor / PID_SCALE, heater_d, heaters_pid[h].d_factor, (int32_t) heater_d * heaters_pid[h].d_factor / PID_SCALE, pid_output_intermed, pid_output);
#endif
#else
if (current_temp >= target_temp)
pid_output = BANG_BANG_OFF;
else
pid_output = BANG_BANG_ON;
#endif
#ifdef HEATER_SANITY_CHECK
// check heater sanity
// implementation is a moving window with some slow-down to compensate for thermal mass
if (target_temp > (current_temp + TEMP_HYSTERESIS)) {
// heating
if (current_temp > heaters_runtime[h].sane_temperature)
// hotter than sane- good since we're heating unless too hot
heaters_runtime[h].sane_temperature = current_temp;
else {
if (heaters_runtime[h].sanity_counter < 40)
heaters_runtime[h].sanity_counter++;
else {
heaters_runtime[h].sanity_counter = 0;
// ratchet up expected temp
heaters_runtime[h].sane_temperature++;
}
}
// limit to target, so if we overshoot by too much for too long an error is flagged
if (heaters_runtime[h].sane_temperature > target_temp)
heaters_runtime[h].sane_temperature = target_temp;
}
else if (target_temp < (current_temp - TEMP_HYSTERESIS)) {
// cooling
if (current_temp < heaters_runtime[h].sane_temperature)
// cooler than sane- good since we're cooling
heaters_runtime[h].sane_temperature = current_temp;
else {
if (heaters_runtime[h].sanity_counter < 125)
heaters_runtime[h].sanity_counter++;
else {
heaters_runtime[h].sanity_counter = 0;
// ratchet down expected temp
heaters_runtime[h].sane_temperature--;
}
}
// if we're at or below 60 celsius, don't freak out if we can't drop any more.
if (current_temp <= 240)
heaters_runtime[h].sane_temperature = current_temp;
// limit to target, so if we don't cool down for too long an error is flagged
else if (heaters_runtime[h].sane_temperature < target_temp)
heaters_runtime[h].sane_temperature = target_temp;
}
// we're within HYSTERESIS of our target
else {
heaters_runtime[h].sane_temperature = current_temp;
heaters_runtime[h].sanity_counter = 0;
}
// compare where we're at to where we should be
if (labs(current_temp - heaters_runtime[h].sane_temperature) > TEMP_HYSTERESIS) {
// no change, or change in wrong direction for a long time- heater is broken!
pid_output = 0;
sersendf_P(PSTR("!! heater %d or temp sensor %d broken- temp is %d.%dC, target is %d.%dC, didn't reach %d.%dC in %d0 milliseconds\n"), h, t, current_temp >> 2, (current_temp & 3) * 25, target_temp >> 2, (target_temp & 3) * 25, heaters_runtime[h].sane_temperature >> 2, (heaters_runtime[h].sane_temperature & 3) * 25, heaters_runtime[h].sanity_counter);
}
#endif /* HEATER_SANITY_CHECK */
heater_set(h, pid_output);
}
void heater_set(heater_t index, uint8_t value) {
if (index >= NUM_HEATERS)
return;
heaters_runtime[index].heater_output = value;
if (heaters[index].heater_pwm) {
*(heaters[index].heater_pwm) = value;
#ifdef DEBUG
if (debug_flags & DEBUG_PID)
sersendf_P(PSTR("PWM{%u = %u}\n"), index, OCR0A);
#endif
}
else {
if (value >= 8)
*(heaters[index].heater_port) |= MASK(heaters[index].heater_pin);
else
*(heaters[index].heater_port) &= ~MASK(heaters[index].heater_pin);
}
}
uint8_t heaters_all_off() {
uint8_t i;
for (i = 0; i < NUM_HEATERS; i++) {
if (heaters_runtime[i].heater_output > 0)
return 0;
}
return 255;
}
void pid_set_p(heater_t index, int32_t p) {
#ifndef BANG_BANG
if (index >= NUM_HEATERS)
return;
heaters_pid[index].p_factor = p;
#endif /* BANG_BANG */
}
void pid_set_i(heater_t index, int32_t i) {
#ifndef BANG_BANG
if (index >= NUM_HEATERS)
return;
heaters_pid[index].i_factor = i;
#endif /* BANG_BANG */
}
void pid_set_d(heater_t index, int32_t d) {
#ifndef BANG_BANG
if (index >= NUM_HEATERS)
return;
heaters_pid[index].d_factor = d;
#endif /* BANG_BANG */
}
void pid_set_i_limit(heater_t index, int32_t i_limit) {
#ifndef BANG_BANG
if (index >= NUM_HEATERS)
return;
heaters_pid[index].i_limit = i_limit;
#endif /* BANG_BANG */
}
void heater_print(uint16_t i) {
sersendf_P(PSTR("P:%ld I:%ld D:%ld Ilim:%u crc:%u "), heaters_pid[i].p_factor, heaters_pid[i].i_factor, heaters_pid[i].d_factor, heaters_pid[i].i_limit, crc_block(&heaters_pid[i].p_factor, 14));
}