-
Notifications
You must be signed in to change notification settings - Fork 336
/
Copy pathdata_loader.py
180 lines (151 loc) · 6.63 KB
/
data_loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
# Basic libraries
import os
import collections
import pandas as pd
import yfinance as yf
from tqdm import tqdm
import warnings
warnings.filterwarnings("ignore")
class DataEngine:
def __init__(self, args):
print("\n--> Data engine has been initialized...")
self.args = args
# Stocks list
self.directory_path = str(os.path.dirname(os.path.abspath(__file__)))
self.stocks_file_path = f"{self.directory_path}/{self.args.stocks_file_path}"
self.stocks_list = []
# Load stock names in a list
self.load_stocks_from_file()
# Dictionary to store data. This will only store and save data if the argument is_save_dictionary is 1.
self.data_dictionary = {}
# Data length
self.stock_data_length = []
def load_stocks_from_file(self):
"""
Load stock names from the file
"""
print("Loading all stocks from file...")
stocks_list = open(self.stocks_file_path, "r").readlines()
stocks_list = [str(item).strip("\n") for item in stocks_list]
# Load symbols
stocks_list = list(sorted(set(stocks_list)))
print("Total number of stocks: %d" % len(stocks_list))
self.stocks_list = stocks_list
def get_most_frequent_key(self, input_list):
counter = collections.Counter(input_list)
return list(counter.keys())[0]
def get_data(self, symbol):
"""
Get stock data from yahoo finance.
"""
future_prices = None
historical_prices = None
# Find period
if self.args.data_granularity_minutes == 1:
period = "7d"
interval = str(self.args.data_granularity_minutes) + "m"
if self.args.data_granularity_minutes == 3600:
period = "5y"
interval = "1d"
else:
period = "30d"
interval = str(self.args.data_granularity_minutes) + "m"
# Get stock price
try:
# Stock price
stock_prices = yf.download(
tickers=symbol,
period=period,
interval=interval,
auto_adjust=False,
progress=False)
stock_prices = stock_prices.reset_index()
try:
stock_prices = stock_prices.drop(columns=["Adj Close"])
except Exception as e:
print("Exception", e)
data_length = stock_prices.shape[0]
self.stock_data_length.append(data_length)
# After getting some data, ignore partial data from yfinance
# based on number of data samples
if len(self.stock_data_length) > 5:
most_frequent_key = self.get_most_frequent_key(
self.stock_data_length)
if (data_length != most_frequent_key and
data_length != self.args.history_to_use and
symbol != self.args.market_index): # Needs index
return [], [], True
if self.args.history_to_use == "all":
# For some reason, yfinance gives some 0
# values in the first index
stock_prices = stock_prices.iloc[1:]
else:
stock_prices = stock_prices.iloc[-self.args.history_to_use:]
if self.args.is_test == 1:
future_prices = stock_prices.iloc[-self.args.future_bars:]
historical_prices = stock_prices.iloc[:-self.args.future_bars]
else:
historical_prices = stock_prices
if stock_prices.shape[0] == 0:
return [], [], True
except Exception as e:
print("Exception", e)
return [], [], True
return historical_prices, future_prices.values.tolist(), False
def get_market_index_price(self):
"""
Gets market index price e.g SPY. One can change it to some other index
"""
symbol = self.args.market_index
stock_price_data, future_prices, not_found = self.get_data(symbol)
if not_found:
return None, None
return stock_price_data, future_prices
def collect_data_for_all_tickers(self):
"""
Iterates over all symbols and collects their data
"""
print("Loading data for all stocks...")
symbol_names = []
historical_price = []
future_price = []
# Any stock with very low volatility is ignored.
# You can change this line to address that.
for i in tqdm(range(len(self.stocks_list))):
symbol = self.stocks_list[i]
try:
stock_price_data, future_prices, not_found = self.get_data(
symbol)
if not not_found:
# Add to lists
symbol_names.append(symbol)
historical_price.append(stock_price_data)
future_price.append(future_prices)
except Exception as e:
print("Exception", e)
continue
# Sometimes, there are some errors in feature generation or price
# extraction, let us remove that stuff
historical_price_info, future_price_info, symbol_names = self.remove_bad_data(
historical_price, future_price, symbol_names)
for i in range(0, len(symbol_names)):
self.data_dictionary[symbol_names[i]] = {
"historical_prices": historical_price_info[i],
"future_prices": future_price_info[i]}
return self.data_dictionary
def remove_bad_data(self, historical_price, future_price, symbol_names):
"""
Remove bad data i.e data that had some errors while scraping or feature generation
*** This can be much more improved with dicts and filter function.
"""
length_dictionary = collections.Counter(
[i.shape[0] for i in historical_price])
length_dictionary = list(length_dictionary.keys())
most_common_length = length_dictionary[0]
filtered_historical_price, filtered_future_prices, filtered_symbols = [], [], [],
for i in range(len(future_price)):
if historical_price[i].shape[0] == most_common_length:
filtered_symbols.append(symbol_names[i])
filtered_historical_price.append(historical_price[i])
filtered_future_prices.append(future_price[i])
return filtered_historical_price, filtered_future_prices, filtered_symbols