Skip to content

Releases: tracel-ai/burn

v0.10.0

24 Oct 22:45
Compare
Choose a tag to compare

Burn v0.10.0 sees the addition of the burn-compute crate to simplify the process of creating new custom backends, a new training dashboard and the possibility of using the GPU in the browser along with a web demo. Additionally, numerous new features, bug fixes, and CI improvements have been made.

Warning: there are breaking changes, see below.

Changes

Burn Compute

Burn Import

  • Add more ONNX record types @antimora

  • Support no-std for ONNX imported models @antimora

  • Add custom file location for loading record with ONNX models @antimora

  • Support importing erf operation to ONNX @AuruTus

Burn Tensor

Burn Dataset

  • Improved speed of SqLite Dataset @antimora

  • Use gix-tempfile only when sqlite is enabled @AlexErrant

Burn Common

  • Add benchmark abstraction @louisfd

  • Use thread-local RNG to generate IDs @dae

Burn Autodiff

  • Use AtomicU64 for node ids improving performance @dae

Burn WGPU

Burn Candle

  • Candle backend is now available as a crate and updated with Candle advances @louisfd @agelas

Burn Train

  • New training cli dashboard using ratatui @nathanielsimard

  • [Breaking] Heavy refactor of burn-train making it more extensible and easier to work with @nathanielsimard

  • Checkpoints can be customized with criteria based on collected metrics @nathanielsimard

  • Add the possibility to do early stopping based on collected metrics @nathanielsimard

Examples

  • Add image classifier web demo using different backends, including WebGPU, @antimora

Bugfixes

  • Epoch and iteration were swapped. (#838) @daniel-vainsencher

  • RNN (Gru & LSTM) were not generic over the batch size @agelas, @EddieMataEwy

  • Other device adaptors in WGPU were ignored when best available device was used @chistophebiocca

Documentation

Chores

Thanks

Thanks to all aforemetioned contributors and to our sponsors @smallstepman, @0x0177b11f and @premAI-io.

v0.9.0

06 Sep 14:48
Compare
Choose a tag to compare

Burn v0.9.0 sees the addition of the Burn Book, a new model repository, and many new operations and optimizations.

Burn Book

The Burn Book is available at https://burn-rs.github.io/book/

Model repository

The Model repository is available at https://github.com/burn-rs/models

Changes to Burn

Neural networks

Tensors

Training

  • New training metrics @Elazrod56
    • CPU temperature and use
    • GPU temperature
    • Memory use
  • Custom training and validation metric loggers @nathanielsimard
  • Migration from log4rs to tracing, better integration in a GUI app @dae
  • Training interruption @dae
  • New custom optimize method @nathanielsimard

Backends

Dataset

Import & ONNX

Fix

  • Hugging Face downloader Windows support @Macil
  • Fix grad replace and autodiff backward broadcast @nathanielsimard
  • Fix processed count at learning completion @dae
  • Adjust some flaky tests @dae
  • Ability to disable experiment logging @dae

Configuration

Documentation

Thanks

Thanks to all aforemetioned contributors and to our sponsors @smallstepman and @premAI-io.

v0.8.0

25 Jul 15:38
Compare
Choose a tag to compare

In this release, our main focus was on creating a new backend using wgpu.
We greatly appreciate the meaningful contributions made by the community across the project.
As usual, we have expanded the number of supported operations.

Changes

Tensor

Dataset

  • Added a dataset using Sqlite for storage. Now used to store huggingface datasets. @antimora
  • New speech command audio dataset. @antimora
  • Create python virtual environment for huggingface dependencies. @dengelt

Burn-Import

Backend

Neural Networks

  • Added LSTM module. @agelas
  • Added GRU module. @agelas
  • Better weights initialization with added support for Xavier Glorot. @louisfd
  • Added MSE loss. @bioinformatist
  • Cleanup padding for convolution and pooling modules. @Luni-4
  • Added sinusoidal positional embedding module. @antimora

Fix

Documentation

  • Improve documentation across the whole project ♥! @antimora

Thanks

Thanks to all contributors and to the sponsor @smallstepman.

v0.7.0

06 May 15:03
Compare
Choose a tag to compare

Serialization

Serialization has been completely revamped since the last release. Modules, Optimizers, and Learning Rate Scheduler now have an associative type, allowing them to determine the type used for serializing and deserializing their state. The solution is documented in the new architecture doc.

State can be saved with any precision, regardless of the backend in use. Precision conversion is performed during serialization and deserialization, ensuring high memory efficiency since the model is not stored twice in memory with different precisions.

All saved states can be loaded from any backend. The precision of the serialized state must be set correctly, but the element types of the backend can be anything.

Multiple (de)serialization recorders are provided:

  • Default (compressed gzip with named message pack format)
  • Bincode
  • Compressed gzip bincode
  • Pretty JSON

Users can extend the current recorder using any serde implementation.

Multiple precision settings are available:

  • Half (f16, i16)
  • Full (f32, i32)
  • Double (f64, i64)

Users can extend the current settings using any supported number type.

Optimizer

The optimizer API has undergone a complete overhaul. It now supports the new serialization paradigm with a simplified trait definition. The learning rate is now passed as a parameter to the step method, making it easier to integrate the new learning rate scheduler. The learning rate configuration is now a part of the learner API. For more information, please refer to the documentation.

Gradient Clipping

You can now clip gradients by norm or by value. An integration is done with optimizers, and gradient clipping can be configured from optimizer configs (Adam & SGD).

Learning Rate Scheduler

A new trait has been introduced for creating learning rate schedulers. This trait follows a similar pattern as the Module and Optimizer APIs, utilizing an associative type that implements the Record trait for state (de)serialization.

The following learning rate schedulers are now available:

  • Noam learning scheduler
  • Constant learning scheduler

Module

The module API has undergone changes. There is no longer a need to wrap modules with the Param struct; only the Tensor struct requires a parameter ID.

All modules can now be created with their configuration and state, eliminating the unnecessary tensor initializations during model deployment for inference.

Convolution

Significant improvements have been made to support all convolution configurations. The stride, dilation, and groups can now be set, with full support for both inference and training.

Transposed convolutions are available in the backend API but do not currently support the backward pass. Once they are fully supported for both training and inference, they will be exposed as modules.

Pooling

The implementation of the average pooling module is now available.

Transformer

The transformer decoder has been implemented, offering support for efficient inference and autoregressive decoding by leveraging layer norms, position-wise feed forward, self-attention, and cross-attention caching.

Tensor

The developer experience of the Tensor API has been improved, providing more consistent error messages across different backends for common operations. The Tensor struct now implements Display, allowing values, shape, backend information, and other useful details to be displayed in an easily readable format.

New operations

  • The flatten operation
  • The mask scatter operation

Torch Backend

The Torch backend now supports bf16.

ONNX

The burn-import project now has the capability to generate the required Burn code and model state from an ONNX file, enabling users to easily import pre-trained models into Burn. The code generation utilizes the end user API, allowing the generated model to be fine-tuned and trained using the learner struct.

Please note that not all operations are currently supported, and assistance from the community is highly appreciated. For more details, please refer to the burn-import repository https://github.com/burn-rs/burn/tree/main/burn-import.

Bug Fixes

  • Backward pass issue when there is implicit broadcasting in add #181

Thanks 🙏

Thanks to all contributors @nathanielsimard , @antimora, @agelas, @bioinformatist, @sunny-g
Thanks to current sponsors: @smallstepman

v0.6.0

21 Mar 14:40
Compare
Choose a tag to compare

Backend API

  • Almost all tensor operations now receive owned tensors instead of references, which enables backend implementations to reuse tensor-allocated memory.
  • Backends now have a different type for their int tensor, with its own set of operations.
  • Removed the IntegerBackend type.
  • Simpler Element trait with fewer functions.
  • New index-related operations (index_select , index_select_assign , index_select_dim and index_select_dim_assign).

Tensor API

  • The Tensor struct now has a third generic parameter Kind with a default value of Float.
  • There are three kinds of tensors: Float, Bool, and Int,
    • Float Tensor ⇒ Tensor<B, D> or Tensor<B, D, Float>
    • Bool Tensor ⇒ Tensor<B, D, Bool>
    • Int Tensor ⇒ Tensor<B, D, Int>
  • You still don’t have to import any trait to have functions enabled, but they have an extra constraint based on the kind of tensor, so you can’t call matmul on a bool tensor. All of it with zero match or if statement, just pure zero-cost abstraction.
  • The BoolTensor struct has been removed.

Autodiff

  • Not all tensors are tracked by default. You now have to call require_grad.
  • The state is not always captured. Operations manually have to clone the state they need for their backward step. This results in a massive performance enhancement.

No Std

  • Some Burn crates don't require std anymore, which enables them to run on any platform:
    • burn-core
    • burn-ndarray
    • burn-common
    • burn-tensor
  • We have a WebAssembly demo with MNIST inference. The code is also available here with a lot of details explaining the process of compiling a model to WebAssembly.

Performance

  • The Tch backend now leverages in-place operations.
  • The NdArray backend now leverages in-place operations.
  • The convolution and maxpooling layers in the NdArray backend have been rewritten with much better performance.
  • The cross-entropy loss module leverages the new index_select operation, resulting in a big performance boost when the number of classes is high.

And of course, a lot of fixes and enhancements everywhere.

Thanks to all the contributors for their work @antimora @twitchax @h4rr9

v0.5.0

12 Feb 20:55
2401d8a
Compare
Choose a tag to compare

New Modules for Vision Tasks

  • Conv1D, Conv2D currently without support for stride, dilation, or group convolution
  • MaxPool2D
  • BatchNorm2D

New General Tensor Operations

Breaking Changes

  • Devices are now passed by reference, thanks to feedback from @djdisodo.
  • The shape function now returns an owned struct, and backends no longer need to cache each shape.

v0.4.0

30 Dec 20:38
2f179f1
Compare
Choose a tag to compare
Bump versions (#141)

v0.3.0

20 Nov 18:31
Compare
Choose a tag to compare
  • Separed backend crates