forked from dusty-nv/jetson-inference
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathimageNet.cpp
232 lines (168 loc) · 5.41 KB
/
imageNet.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
/*
* http://github.com/dusty-nv/jetson-inference
*/
#include "imageNet.h"
#include "cudaMappedMemory.h"
#include "cudaResize.h"
// stuff we know about the network and the caffe input/output blobs
static const int MAX_BATCH_SIZE = 1;
const char* INPUT_BLOB_NAME = "data";
const char* OUTPUT_BLOB_NAME = "prob";
// constructor
imageNet::imageNet() : tensorNet()
{
mOutputClasses = 0;
}
// destructor
imageNet::~imageNet()
{
}
// Create
imageNet* imageNet::Create( imageNet::NetworkType networkType )
{
imageNet* net = new imageNet();
if( !net )
return NULL;
if( !net->init(networkType) )
{
printf("imageNet -- failed to initialize.\n");
return NULL;
}
return net;
}
imageNet* imageNet::Create( const char* prototxt_path, const char* model_path, const char* mean_binary,
const char* class_path, const char* input, const char* output )
{
imageNet* net = new imageNet();
if( !net )
return NULL;
if( !net->init(prototxt_path, model_path, mean_binary, class_path, input, output) )
{
printf("imageNet -- failed to initialize.\n");
return NULL;
}
return net;
}
bool imageNet::init(const char* prototxt_path, const char* model_path, const char* mean_binary, const char* class_path, const char* input, const char* output)
{
/*
* load and parse googlenet network definition and model file
*/
if( !tensorNet::LoadNetwork( prototxt_path, model_path, mean_binary, input, output ) )
{
printf("failed to load %s\n", model_path);
return false;
}
printf(LOG_GIE "%s loaded\n", model_path);
/*
* load synset classnames
*/
mOutputClasses = mOutputs[0].dims.c;
if( !loadClassInfo(class_path) || mClassSynset.size() != mOutputClasses || mClassDesc.size() != mOutputClasses )
{
printf("imageNet -- failed to load synset class descriptions (%zu / %zu of %u)\n", mClassSynset.size(), mClassDesc.size(), mOutputClasses);
return false;
}
printf("%s initialized.\n", model_path);
return true;
}
// loadClassInfo
bool imageNet::loadClassInfo( const char* filename )
{
if( !filename )
return false;
FILE* f = fopen(filename, "r");
if( !f )
{
printf("imageNet -- failed to open %s\n", filename);
return false;
}
char str[512];
while( fgets(str, 512, f) != NULL )
{
const int syn = 9; // length of synset prefix (in characters)
const int len = strlen(str);
if( len < syn + 1 )
continue;
str[syn] = 0;
str[len-1] = 0;
const std::string a = str;
const std::string b = (str + syn + 1);
//printf("a=%s b=%s\n", a.c_str(), b.c_str());
mClassSynset.push_back(a);
mClassDesc.push_back(b);
}
fclose(f);
printf("imageNet -- loaded %zu class info entries\n", mClassSynset.size());
if( mClassSynset.size() == 0 )
return false;
return true;
}
// init
bool imageNet::init( imageNet::NetworkType networkType )
{
const char* proto_file[] = { "alexnet.prototxt", "googlenet.prototxt" };
const char* model_file[] = { "bvlc_alexnet.caffemodel", "bvlc_googlenet.caffemodel" };
/*
* load and parse googlenet network definition and model file
*/
if( !tensorNet::LoadNetwork( proto_file[networkType], model_file[networkType], NULL, INPUT_BLOB_NAME, OUTPUT_BLOB_NAME ) )
{
printf("failed to load %s\n", model_file[networkType]);
return false;
}
mNetworkType = networkType;
printf(LOG_GIE "%s loaded\n", GetNetworkName());
/*
* load synset classnames
*/
mOutputClasses = mOutputs[0].dims.c;
if( !loadClassInfo("ilsvrc12_synset_words.txt") || mClassSynset.size() != mOutputClasses || mClassDesc.size() != mOutputClasses )
{
printf("imageNet -- failed to load synset class descriptions (%zu / %zu of %u)\n", mClassSynset.size(), mClassDesc.size(), mOutputClasses);
return false;
}
printf("%s initialized.\n", GetNetworkName());
return true;
}
// from imageNet.cu
cudaError_t cudaPreImageNetMean( float4* input, size_t inputWidth, size_t inputHeight, float* output, size_t outputWidth, size_t outputHeight, const float3& mean_value );
// Classify
int imageNet::Classify( float* rgba, uint32_t width, uint32_t height, float* confidence )
{
if( !rgba || width == 0 || height == 0 )
{
printf("imageNet::Classify( 0x%p, %u, %u ) -> invalid parameters\n", rgba, width, height);
return -1;
}
// downsample and convert to band-sequential BGR
if( CUDA_FAILED(cudaPreImageNetMean((float4*)rgba, width, height, mInputCUDA, mWidth, mHeight,
make_float3(104.0069879317889f, 116.66876761696767f, 122.6789143406786f))) )
{
printf("imageNet::Classify() -- cudaPreImageNetMean failed\n");
return -1;
}
// process with GIE
void* inferenceBuffers[] = { mInputCUDA, mOutputs[0].CUDA };
mContext->execute(1, inferenceBuffers);
//CUDA(cudaDeviceSynchronize());
PROFILER_REPORT();
// determine the maximum class
int classIndex = -1;
float classMax = -1.0f;
for( size_t n=0; n < mOutputClasses; n++ )
{
const float value = mOutputs[0].CPU[n];
if( value >= 0.01f )
printf("class %04zu - %f (%s)\n", n, value, mClassDesc[n].c_str());
if( value > classMax )
{
classIndex = n;
classMax = value;
}
}
if( confidence != NULL )
*confidence = classMax;
//printf("\nmaximum class: #%i (%f) (%s)\n", classIndex, classMax, mClassDesc[classIndex].c_str());
return classIndex;
}