-
Notifications
You must be signed in to change notification settings - Fork 111
/
Copy pathneural_network.py
executable file
·52 lines (38 loc) · 1.63 KB
/
neural_network.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
#!/usr/bin/env python
import numpy as np
import tensorflow as tf
import input_data
def init_weights(shape):
return tf.Variable(tf.random_normal(shape, stddev=0.01))
def model(X, w_h, w_o):
h = tf.nn.sigmoid(tf.matmul(
X, w_h)) # this is a basic mlp, think 2 stacked logistic regressions
return tf.matmul(
h,
w_o) # note that we dont take the softmax at the end because our cost fn does that for us
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
trX, trY, teX, teY = mnist.train.images, mnist.train.labels, mnist.test.images, mnist.test.labels
X = tf.placeholder("float", [None, 784])
Y = tf.placeholder("float", [None, 10])
w_h = init_weights([784, 625]) # create symbolic variables
w_o = init_weights([625, 10])
py_x = model(X, w_h, w_o)
cost = tf.reduce_mean(
tf.nn.softmax_cross_entropy_with_logits(py_x, Y)) # compute costs
train_op = tf.train.GradientDescentOptimizer(0.05).minimize(
cost) # construct an optimizer
predict_op = tf.argmax(py_x, 1)
# Launch the graph in a session
with tf.Session() as sess:
# you need to initialize all variables
tf.initialize_all_variables().run()
for i in range(100):
for start, end in zip(
range(0, len(trX), 128), range(128, len(trX), 128)):
sess.run(train_op,
feed_dict={X: trX[start:end],
Y: trY[start:end]})
print(i,
np.mean(np.argmax(teY, axis=1) == sess.run(predict_op,
feed_dict={X: teX,
Y: teY})))