forked from RSGInc/EMAT_VE
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathemat_ve_wrapper.py
1079 lines (914 loc) · 36.2 KB
/
emat_ve_wrapper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
from genericpath import exists
import os
import numpy as np
import pandas as pd
import logging
import tempfile
import re
import shutil
import platform
import subprocess
import json
from distutils.dir_util import copy_tree
from distutils.file_util import copy_file
from emat import Scope, SQLiteDB
from emat.model.core_files import FilesCoreModel
from emat.model.core_files.parsers import TableParser, MappingParser, loc, key, iloc
_logger = logging.getLogger("EMAT.VEModel")
# The demo model code is located in the same
# directory as this script file. We can recover
# this directory name like this, even if the
# current working directory is different.
this_directory = os.path.dirname(__file__)
def scenario_input(*filename):
"""The path to a scenario_input file."""
return os.path.join(this_directory, 'Scenario-Inputs', *filename)
def join_norm(*args):
"""Normalize joined paths."""
return os.path.normpath(os.path.join(*args))
def r_join_norm(*args):
"""Normalize joined paths."""
return os.path.normpath(os.path.join(*args)).replace('\\','/')
class VEModel(FilesCoreModel):
"""
A class for using the Vision Eval RSPM as a files core model.
Args:
db (emat.Database, optional):
An optional Database to store experiments and results.
This allows this module to store results in a persistent
manner across sessions. If a `db` is not given, one is
created and initialized in the temporary directory
alongside the other model files, but it will be
deleted automatically when the Python session ends.
db_filename (str, default "verspm.db")
The filename used to create a database if no existing
database is given in `db`.
scope (emat.Scope, optional):
A YAML file that defines the scope for these model
runs. If not given, the default scope stored in this
package directly is used.
"""
def __init__(self, db=None, db_filename="verspm.db", scope=None):
# Make a temporary directory for this instance.
self.master_directory = tempfile.TemporaryDirectory(dir=join_norm(this_directory,'Temporary'))
os.chdir(self.master_directory.name)
_logger.warning(f"changing cwd to {self.master_directory.name}")
cwd = self.master_directory.name
# Housekeeping for this example:
# Also copy the CONFIG and SCOPE files
for i in ['ve-model-config']:
shutil.copy2(
join_norm(this_directory, 'EMAT-VE-Configs', f"{i}.yml"),
join_norm(cwd, f"{i}.yml"),
)
if scope is None:
scope = Scope(join_norm(this_directory, 'EMAT-VE-Configs', "ve-model-scope.yml"))
for i in ['scope']:
shutil.copy2(
join_norm(this_directory, 'EMAT-VE-Configs', f"ve-model-{i}.yml"),
join_norm(cwd, f"ve-model-{i}.yml"),
)
else:
scope.dump(filename=join_norm(cwd, f"ve-model-scope.yml"))
# Initialize a new daatabase if none was given.
if db is None:
if os.path.exists(db_filename):
initialize = False
else:
initialize = True
db = SQLiteDB(
db_filename,
initialize=initialize,
)
if db is False: # explicitly use no DB
db = None
else:
if scope.name not in db.read_scope_names():
db.store_scope(scope)
# Initialize the super class (FilesCoreModel)
super().__init__(
configuration=join_norm(cwd, "ve-model-config.yml"),
scope=scope,
db=db,
name='VEModel',
local_directory = cwd,
)
if isinstance(db, SQLiteDB):
self._sqlitedb_path = db.database_path
# Create parameter address to indicate directory in which the scenario files are stored
# Create a scenario input directory dictionary
scenario_dir = self.config['scenario_dir']
self.scenario_input_dirs = {parameter.name:os.path.join(scenario_dir, parameter.address) for parameter in self.scope.get_parameters()}
# Ensuring R Exe path is in env.
os.environ['path'] = join_norm(self.config['r_executable'])+';'+os.environ['path']
# Ensure that R paths are set correctly.
r_lib = self.config['r_library_path']
r_runtime_path = self.config['r_runtime_path']
with open(join_norm(self.local_directory, '.Rprofile'), 'wt') as rprof:
rprof.write(f'source(file.path("{r_runtime_path}", "VisionEval.R"), chdir=TRUE)')
cmd = 'Rscript'
self.modelname = self.config['model_type'] + '-' + self.config['model_variant']
modelpath = r_join_norm(self.local_directory, self.modelname)
self.model_path = modelpath
# Add the model year and base year
self.model_base_year = int(self.config['base_year'])
self.model_future_year = int(self.config['model_year'])
with open(join_norm(self.local_directory, 'veinstaller.R'), 'wt') as veinstaller:
veinstaller.write(f"""
# This model should load the base year results
ematmodel <- installModel('{self.config['model_type']}', variant='{self.config['model_variant']}', '{modelpath}', confirm=FALSE)
# Get the config path from the model
model_dir <- ematmodel$setting("ModelDir")
config_file <- file.path(model_dir, "visioneval.cnf")
# Update the config to load the base year model
runConfig_ls <- list(
Model = "{self.config['model_type']} 3.0 MultiModal, STS Powertrain and Telework",
Scenario = "{self.config['model_type']} {self.config["model_year"]} METRO MultiModal, STS Powertrain, with telework",
Description = "STS inputs",
Region = "METRO",
State = "OR",
BaseYear = "2010",
Years = c('{self.config["model_year"]}'),
LoadModel = '{self.config['base_model']}'
)
viewSetup(Param_ls = runConfig_ls)
yaml::write_yaml(runConfig_ls, config_file)
# Re configure the model and run
ematmodel$configure()
""")
# print(arg)
# print([cmd, '-e', arg])
results = subprocess.run(
[cmd, 'veinstaller.R'],
cwd=self.local_directory,
capture_output=False)
print(results)
def read_csv_index_character(filename, index_colname, **kwargs,):
df = pd.read_csv(filename, **kwargs)
df = df.set_index(index_colname)
df.index = df.index.map(str)
return df
for measure in scope.get_measures():
instructions = {}
if measure.parser:
if measure.parser.get('loc'):
instructions[measure.name] = loc[(str(j) for j in measure.parser.get('loc'))]
self.add_parser(
TableParser(
measure.parser.get('file'),
instructions,
reader_method=read_csv_index_character,
index_colname='Measure',
)
)
def setup(self, params: dict):
"""
Configure the core model with the experiment variable values.
This method is the place where the core model set up takes place,
including creating or modifying files as necessary to prepare
for a VE core model run. When running experiments, this method
is called once for each core model experiment, where each experiment
is defined by a set of particular values for both the exogenous
uncertainties and the policy levers. These values are passed to
the experiment only here, and not in the `run` method itself.
This facilitates debugging, as the `setup` method can potentially
be used without the `run` method, allowing the user to manually
inspect the prepared files and ensure they are correct before
actually running a potentially expensive model.
At the end of the `setup` method, a core model experiment should be
ready to run using the `run` method.
Args:
params (dict):
experiment variables including both exogenous
uncertainty and policy levers
Raises:
KeyError:
if a defined experiment variable is not supported
by the core model
"""
_logger.info(f"{self.config['model_type']} SETUP...")
for p in self.scope.get_parameters():
if p.name not in params:
_logger.warning(f" - for {p.name} using default value {p.default}")
params[p.name] = p.default
super().setup(params)
# Set R environment path to run R and use visioneval to install model
os.environ['path'] = join_norm(self.config['r_executable'])+';'+os.environ['path']
# Check if we are using distributed multi-processing. If so,
# we'll need to copy some files into a local working directory,
# as otherwise changes in the files will over-write each other
# when different processes are working in a common directory at
# the same time.
try:
# First try to import the dask.distributed library
# and check if this code is running on a worker.
from dask.distributed import get_worker
worker = get_worker()
except (ValueError, ImportError):
# If the library is not available, or if the code is
# not running on a worker, then we are not running
# in multi-processing mode, and we can just use
# the main cwd as the working directory without
# copying anything.
pass
else:
# If we do find we are running this setup on a
# worker, then we want to set the local directory
# accordingly. We copy model files from the "master"
# working directory to the worker's local directory,
# if it is different (it should be). Depending
# on how large your core model is, you may or may
# not want to be copying the whole thing.
if self.local_directory != worker.local_directory:
# Make the archive path absolute, so all archives
# go back to the original directory.
# If using non-file based model using installModel function then
# it should install model once again in the worker's local directory
self.archive_path = os.path.abspath(self.resolved_archive_path)
_logger.debug(f"DISTRIBUTED.COPY FROM {self.local_directory}")
_logger.debug(f" TO {worker.local_directory}")
copy_tree(
join_norm(self.local_directory, self.modelname),
join_norm(worker.local_directory, self.modelname),
)
copy_file(
join_norm(self.local_directory, '.Rprofile'),
join_norm(worker.local_directory, '.Rprofile'),
)
self.local_directory = worker.local_directory
self.model_path = join_norm(worker.local_directory, self.modelname)
# The process of manipulating each input file is broken out
# into discrete sub-methods, as each step is loosely independent
# and having separate methods makes this clearer.
tmip_vars = [var_name.upper() for var_name in params.keys()]
if 'LUDENSITYMIX' in tmip_vars:
self._manipulate_ludensity(params)
if 'INTDENSITYSCEN' in tmip_vars:
self._manipulate_intdensity(params)
if 'HHPOPGROWTHRATE' in tmip_vars:
self._manipulate_population(params)
if 'INCOMEGROWTH' in tmip_vars:
self._manipulate_income(params)
if 'LDVECODRVSCEN' in tmip_vars:
self._manipulate_ldvecodrv(params)
if 'CARSVCAVAILSCEN' in tmip_vars:
self._manipulate_carsvcavail(params)
if 'SHDCARSVCOCCUPRATE' in tmip_vars:
self._manipulate_shdcarsvc(params)
if 'DRVLESSADJSCEN' in tmip_vars:
self._manipulate_drvlessadj(params)
if 'DRVLESSPROPREMOTEACC' in tmip_vars and 'PROPPARKINGFEEAVOID' in tmip_vars:
self._manipulate_drvless_param(params)
if 'AVVEHSALESGROWTHSCEN' in tmip_vars:
self._manipulate_drvlessvehsales(params)
if 'CARCHARGEAVAILSCEN' in tmip_vars:
self._manipulate_carchargeavailscen(params)
if 'CICHANGERATESCEN' in tmip_vars:
self._manipulate_cichange(params)
if 'INVESTMENTSCEN' in tmip_vars:
self._manipulate_inv(params)
if 'SOVDIVIVERTSCEN' in tmip_vars:
self._manipulate_sovdivert(params)
if 'TAXSCEN' in tmip_vars:
self._manipulate_taxes(params)
if 'LANEMILESCEN' in tmip_vars:
self._manipulate_mlanemiles(params)
if 'OPSDEPLOYSCEN' in tmip_vars:
self._manipulate_opsdeployment(params)
if 'TRANSITSERVICESCEN' in tmip_vars:
self._manipulate_transitservice(params)
if 'TDMINVESTMENTSCEN' in tmip_vars:
self._manipulate_tdmareatype(params)
if 'TRANSITSCEN' in tmip_vars:
self._manipulate_transitscen(params)
if 'POWERTRAINSCEN' in tmip_vars:
self._manipulate_powertrainscen(params)
_logger.info(f"{self.config['model_type']} SETUP complete")
def _manipulate_by_categorical_drop_in(self, params, cat_param, ve_scenario_dir):
"""
Copy in the relevant input files.
Args:
params (dict):
The parameters for this experiment, including both
exogenous uncertainties and policy levers.
"""
scenario_dir = params[cat_param]
for i in os.scandir(scenario_input(ve_scenario_dir,scenario_dir)):
if i.is_file():
shutil.copyfile(
scenario_input(ve_scenario_dir,scenario_dir,i.name),
join_norm(self.resolved_model_path, 'inputs', i.name)
)
def _manipulate_by_mixture(self, params, weight_param, ve_scenario_dir, no_mix_cols=('Year', 'Geo',), float_dtypes=False):
"""
Prepare files by interpolating parameters between two files.
Args:
params (dict):
The parameters for this experiment, including both
exogenous uncertainties and policy levers.
weight_param:
The name of the parameters that is generated from the
scope file
ve_scenario_dir:
The name of the directory that contains the two set
of folder/files that need to be interpolated
no_mix_cols:
Columns that should not be interpolated
"""
weight_2 = params[weight_param]
weight_1 = 1.0-weight_2
# Gather list of all files in directory "1", and confirm they
# are also in directory "2"
filenames = []
for i in os.scandir(scenario_input(ve_scenario_dir,'1')):
if i.is_file():
filenames.append(i.name)
f2 = scenario_input(ve_scenario_dir,'2', i.name)
if not os.path.exists(f2):
raise FileNotFoundError(f2)
for filename in filenames:
df1 = pd.read_csv(scenario_input(ve_scenario_dir,'1',filename))
isna_ = (df1.isnull().values).any()
df1.fillna(0, inplace=True)
df2 = pd.read_csv(scenario_input(ve_scenario_dir,'2',filename))
df2.fillna(0, inplace=True)
float_mix_cols = list(df1.select_dtypes('float').columns)
if float_dtypes:
float_mix_cols = float_mix_cols+list(df1.select_dtypes('int').columns)
for j in no_mix_cols:
if j in float_mix_cols:
float_mix_cols.remove(j)
if float_mix_cols:
df1_float = df1[float_mix_cols]
df2_float = df2[float_mix_cols]
df1[float_mix_cols] = df1_float * weight_1 + df2_float * weight_2
int_mix_cols = list(df1.select_dtypes('int').columns)
if float_dtypes:
int_mix_cols = list()
for j in no_mix_cols:
if j in int_mix_cols:
int_mix_cols.remove(j)
if int_mix_cols:
df1_int = df1[int_mix_cols]
df2_int = df2[int_mix_cols]
df_int_mix = df1_int * weight_1 + df2_int * weight_2
df1[int_mix_cols] = np.round(df_int_mix).astype(int)
out_filename = join_norm(
self.resolved_model_path, 'inputs', filename
)
if isna_:
df1.replace(0, np.nan, inplace=True)
df1.to_csv(out_filename, index=False, float_format="%.5f", na_rep='NA')
def _manipulate_by_scale(self, params, param_map, ve_scenario_dir, max_thresh=1E9):
"""
Prepare files by multiplying fields with the scalar value.
Args:
params (dict):
The parameters for this experiment, including both
exogenous uncertainties and policy levers.
param_map:
The dictionary that maps parameter to columns in the data
ve_scenario_dir:
The name of the directory that contains the two set
of folder/files that need to be interpolated
no_mix_cols:
Columns that should not be interpolated
"""
# Gather list of all files in directory "1", and confirm they
# are also in directory "2"
filenames = []
for i in os.scandir(scenario_input(ve_scenario_dir)):
if i.is_file():
filenames.append(i.name)
for filename in filenames:
df1 = pd.read_csv(scenario_input(ve_scenario_dir,filename))
isna_ = (df1.isnull().values).any()
df1.fillna(0, inplace=True)
for param_name, column_names in param_map.items():
if not isinstance(column_names, list):
df1[[column_names]] = (df1[[column_names]]*params.get(param_name)).clip(lower=-max_thresh,upper=max_thresh)
else:
for column_name in column_names:
df1[[column_name]] = (df1[[column_name]]*params.get(param_name)).clip(lower=-max_thresh,upper=max_thresh)
out_filename = join_norm(
self.resolved_model_path, 'inputs', filename
)
if isna_:
df1.replace(0, np.nan, inplace=True)
df1.to_csv(out_filename, index=False, float_format="%.5f", na_rep='NA')
def _manipulate_by_delta(self, params, weight_param, ve_scenario_dir, no_mix_cols=('Year', 'Geo',)):
"""
Prepare files by interpolating parameters between two files.
Args:
params (dict):
The parameters for this experiment, including both
exogenous uncertainties and policy levers.
weight_param:
The name of the parameters that is generated from the
scope file
ve_scenario_dir:
The name of the directory that contains the two set
of folder/files that need to be interpolated
no_mix_cols:
Columns that should not be interpolated
"""
# weight_2 = params[weight_param]
# weight_1 = 1.0-weight_2
weight_ = params[weight_param]
# Gather list of all files in directory "1", and confirm they
# are also in directory "2"
filenames = []
for i in os.scandir(scenario_input(ve_scenario_dir,'1')):
if i.is_file():
filenames.append(i.name)
f2 = scenario_input(ve_scenario_dir,'2', i.name)
if not os.path.exists(f2):
raise FileNotFoundError(f2)
for filename in filenames:
df1 = pd.read_csv(scenario_input(ve_scenario_dir,'1',filename))
df2 = pd.read_csv(scenario_input(ve_scenario_dir,'2',filename))
float_mix_cols = list(df1.select_dtypes('float').columns)
for j in no_mix_cols:
if j in float_mix_cols:
float_mix_cols.remove(j)
if float_mix_cols:
df1_float = df1[float_mix_cols]
df2_float = df2[float_mix_cols]
delta_float = df2_float - df1_float
df1[float_mix_cols] = df1_float + (delta_float * weight_)
int_mix_cols = list(df1.select_dtypes('int').columns)
for j in no_mix_cols:
if j in int_mix_cols:
int_mix_cols.remove(j)
if int_mix_cols:
df1_int = df1[int_mix_cols]
df2_int = df2[int_mix_cols]
delta_int = df2_int - df1_int
df_int_mix = df1_int + (delta_int * weight_)
df1[int_mix_cols] = np.round(df_int_mix).astype(int)
out_filename = join_norm(
self.resolved_model_path, 'inputs', filename
)
df1.to_csv(out_filename, index=False, float_format="%.5f")
def _manipulate_ludensity(self, params):
"""
Prepare the urban mix proportion by marea
Type: Categorical
Args:
params (dict):
The parameters for this experiment, including both
exogenous uncertainties and policy levers.
"""
return self._manipulate_by_mixture(params, 'LUDENSITYMIX', self.scenario_input_dirs.get('LUDENSITYMIX'))
def _manipulate_intdensity(self, params):
"""
Prepare the D3BPO4 adjustment factor by marea
Type: Mixture
Args:
params (dict):
The parameters for this experiment, including both
exogenous uncertainties and policy levers.
"""
return self._manipulate_by_mixture(params, 'INTDENSITYSCEN', self.scenario_input_dirs.get('INTDENSITYSCEN'))
def _manipulate_population(self, params):
"""
Prepare the population files
Type: Categorical
Args:
params (dict):
The parameters for this experiment, including both
exogenous uncertainties and policy levers.
"""
return self._manipulate_by_categorical_drop_in(params, 'HHPOPGROWTHRATE', self.scenario_input_dirs.get('HHPOPGROWTHRATE'))
def _manipulate_income(self, params):
"""
Prepare the income input file based on a template file.
Type: Manipulation
Args:
params (dict):
The parameters for this experiment, including both
exogenous uncertainties and policy levers.
"""
income_df = pd.read_csv(join_norm(scenario_input(self.scenario_input_dirs.get('INCOMEGROWTHRATE'),'azone_per_cap_inc.csv')))
unique_years = income_df.Year.unique()
base_year = self.model_base_year
for run_year in unique_years:
year_diff = run_year - base_year
income_df.loc[income_df.Year == run_year,['HHIncomePC.2005', 'GQIncomePC.2005']] = \
income_df.loc[income_df.Year == run_year,['HHIncomePC.2005', 'GQIncomePC.2005']] * (params['INCOMEGROWTHRATE'] ** year_diff)
out_filename = join_norm(
self.resolved_model_path, 'inputs', 'azone_per_cap_inc.csv'
)
_logger.debug(f"writing updates to: {out_filename}")
income_df.to_csv(out_filename, index=False)
def _manipulate_ldvecodrv(self, params):
"""
Prepate the LDV ecodrive penetration file.
Type: Mixture
Args:
params (dict):
The parameters for this experiment, including both
exogenous uncertainties and policy levers.
"""
return self._manipulate_by_mixture(params, 'LDVECODRVSCEN', self.scenario_input_dirs.get('LDVECODRVSCEN'))
def _manipulate_carsvcavail(self, params):
"""
Prepate the car service availability file.
Type: Categorical
Args:
params (dict):
The parameters for this experiment, including both
exogenous uncertainties and policy levers.
"""
return self._manipulate_by_categorical_drop_in(params, 'CARSVCAVAILSCEN', self.scenario_input_dirs.get('CARSVCAVAILSCEN'))
def _manipulate_shdcarsvc(self, params):
"""
Prepare the shared car service occupancy rate file.
Type: Manipulation
Args:
params (dict):
The parameters for this experiment, including both
exogenous uncertainties and policy levers.
"""
shdcarsvc_occp_df = pd.read_csv(join_norm(scenario_input(self.scenario_input_dirs.get('SHDCARSVCOCCUPRATE'),'region_carsvc_shd_occup.csv')))
future_year = self.model_future_year
shdcarsvc_occp_df.loc[shdcarsvc_occp_df.Year == future_year, 'ShdCarSvcAveOccup'] = params['SHDCARSVCOCCUPRATE']
out_filename = join_norm(
self.resolved_model_path, 'inputs', 'region_carsvc_shd_occup.csv'
)
_logger.debug(f"writing updates to: {out_filename}")
shdcarsvc_occp_df.to_csv(out_filename, index=False)
def _manipulate_drvlessadj(self, params):
"""
Prepare the delay and smoothing adjustment factor file
Type: Categorical
Args:
params (dict):
The parameters for this experiment, including both
exogenous uncertainties and policy levers.
"""
return self._manipulate_by_categorical_drop_in(params, 'DRVLESSADJSCEN', self.scenario_input_dirs.get('DRVLESSADJSCEN'))
def _manipulate_drvless_param(self, params):
"""
Prepare the driverless vehicle parameters file.
Type: Manipulation
Args:
params (dict):
The parameters for this experiment, including both
exogenous uncertainties and policy levers.
"""
drvless_veh_param_df = pd.read_csv(join_norm(scenario_input(self.scenario_input_dirs.get('DRVLESSPROPREMOTEACC'),'region_driverless_vehicle_parameter.csv')))
future_year = self.model_future_year
drvless_veh_param_df.loc[drvless_veh_param_df.Year == future_year, 'PropRemoteAccess'] = params['DRVLESSPROPREMOTEACC']
drvless_veh_param_df.loc[drvless_veh_param_df.Year == future_year, 'PropParkingFeeAvoid'] = params['PROPPARKINGFEEAVOID']
out_filename = join_norm(
self.resolved_model_path, 'inputs', 'region_driverless_vehicle_parameter.csv'
)
_logger.debug(f"writing updates to: {out_filename}")
drvless_veh_param_df.to_csv(out_filename, index=False)
def _manipulate_drvlessvehsales(self, params):
"""
Prepare the driverless vehicles sales file
Type: Categorical
Args:
params (dict):
The parameters for this experiment, including both
exogenous uncertainties and policy levers.
"""
return self._manipulate_by_categorical_drop_in(params, 'AVVEHSALESGROWTHSCEN', self.scenario_input_dirs.get('AVVEHSALESGROWTHSCEN'))
def _manipulate_carchargeavailscen(self, params):
"""
Prepare the azone_charging_availability.csv
Type: Mixture
Args:
params (dict):
The parameters for this experiment, including both
exogenous uncertainties and policy levers.
"""
return self._manipulate_by_mixture(params, 'CARCHARGEAVAILSCEN', self.scenario_input_dirs.get('CARCHARGEAVAILSCEN'))
def _manipulate_cichange(self, params):
"""
Prepare the carbon emissions related files
Type: Categorical
Args:
params (dict):
The parameters for this experiment, including both
exogenous uncertainties and policy levers.
"""
return self._manipulate_by_categorical_drop_in(params, 'CICHANGERATESCEN', self.scenario_input_dirs.get('CICHANGERATESCEN'))
def _manipulate_inv(self, params):
"""
Prepare the investment related files
Type: Categorical
Args:
params (dict):
The parameters for this experiment, including both
exogenous uncertainties and policy levers.
"""
return self._manipulate_by_categorical_drop_in(params, 'INVESTMENTSCEN', self.scenario_input_dirs.get('INVESTMENTSCEN'))
def _manipulate_sovdivert(self, params):
"""
Prepare the azone_prop_sov_dvmt_diverted.csv
Type: Mixture
Args:
params (dict):
The parameters for this experiment, including both
exogenous uncertainties and policy levers.
"""
return self._manipulate_by_mixture(params, 'SOVDIVIVERTSCEN', self.scenario_input_dirs.get('SOVDIVIVERTSCEN'))
def _manipulate_taxes(self, params):
"""
Prepare the azone_veh_use_taxes.csv file.
Type: Categorical
Args:
params (dict):
The parameters for this experiment, including both
exogenous uncertainties and policy levers.
"""
return self._manipulate_by_mixture(params, 'TAXSCEN', self.scenario_input_dirs.get('TAXSCEN'), no_mix_cols=('Year', 'Geo', 'FuelTax.2005'))
def _manipulate_mlanemiles(self, params):
"""
Prepare the marea_lane_miles.csv file
Type: Manipulation
Args:
params (dict):
The parameters for this experiment, including both
exogenous uncertainties and policy levers.
"""
return self._manipulate_by_delta(params, 'LANEMILESCEN', self.scenario_input_dirs.get('LANEMILESCEN'))
def _manipulate_opsdeployment(self, params):
"""
Prepare the marea_operations_deployment.csv file
Type: Mixture
Args:
params (dict):
The parameters for this experiment, including both
exogenous uncertainties and policy levers.
"""
return self._manipulate_by_mixture(params, 'OPSDEPLOYSCEN', self.scenario_input_dirs.get('OPSDEPLOYSCEN'))
def _manipulate_transitservice(self, params):
"""
Prepare the marea_transit_service.csv file
Type: Mixture
Args:
params (dict):
The parameters for this experiment, including both
exogenous uncertainties and policy levers.
"""
return self._manipulate_by_mixture(params, 'TRANSITSERVICESCEN', self.scenario_input_dirs.get('TRANSITSERVICESCEN'))
def _manipulate_tdmareatype(self, params):
"""
Prepare the marea_travel-demand-mgt_by_area-type.csv
Type: Mixture
Args:
params (dict):
The parameters for this experiment, including both
exogenous uncertainties and policy levers.
"""
return self._manipulate_by_mixture(params, 'TDMINVESTMENTSCEN', self.scenario_input_dirs.get('TDMINVESTMENTSCEN'))
def _manipulate_transitscen(self, params):
"""
Prepare the transit mix scenario
Type: Mixture
Args:
params (dict):
The parameters for this experiment, including both
exogenous uncertainties and policy levers.
"""
return self._manipulate_by_mixture(params, 'TRANSITSCEN', self.scenario_input_dirs.get('TRANSITSCEN'), float_dtypes=True)
def _manipulate_powertrainscen(self, params):
"""
Prepare the run model script so that approprate PowertrainAndFuelsPackage is used
Type: Categorical
Args:
params (dict):
The parameters for this experiment, including both
exogenous uncertainties and policy levers.
"""
scenario_dir = params['POWERTRAINSCEN']
ve_scenario_dir = self.scenario_input_dirs.get('POWERTRAINSCEN')
for i in os.scandir(scenario_input(ve_scenario_dir,scenario_dir)):
if i.is_file():
shutil.copyfile(
scenario_input(ve_scenario_dir,scenario_dir,i.name),
join_norm(self.resolved_model_path, 'scripts', i.name)
)
def _manipulate_expand_roads(self, params):
"""
Prepare the expand road investment files
Type: Categorical
Args:
params (dict):
The parameters for this experiment, including both
exogenous uncertainties and policy levers.
"""
return self._manipulate_by_categorical_drop_in(params, 'EXPANDROADS', self.scenario_input_dirs.get('EXPANDROADS'))
def _manipulate_transit(self, params):
"""
Prepare the transit investment files
Type: Categorical
Args:
params (dict):
The parameters for this experiment, including both
exogenous uncertainties and policy levers.
"""
return self._manipulate_by_categorical_drop_in(params, 'TRANSIT', self.scenario_input_dirs.get('TRANSIT'))
def _manipulate_bikewalk(self, params):
"""
Prepare the bike and walk files
Type: Categorical
Args:
params (dict):
The parameters for this experiment, including both
exogenous uncertainties and policy levers.
"""
return self._manipulate_by_categorical_drop_in(params, 'BIKEWALK', self.scenario_input_dirs.get('BIKEWALK'))
def _manipulate_operations(self, params):
"""
Prepare the operations files
Type: Categorical
Args:
params (dict):
The parameters for this experiment, including both
exogenous uncertainties and policy levers.
"""
return self._manipulate_by_categorical_drop_in(params, 'OPERATIONS', self.scenario_input_dirs.get('OPERATIONS'))
def run(self):
"""
Run the core model.
This method is the place where the RSPM core model run takes place.
Note that this method takes no arguments; all the input
exogenous uncertainties and policy levers are delivered to the
core model in the `setup` method, which will be executed prior
to calling this method. This facilitates debugging, as the `setup`
method can potentially be used without the `run` method, allowing
the user to manually inspect the prepared files and ensure they
are correct before actually running a potentially expensive model.
When running experiments, this method is called once for each core
model experiment, after the `setup` method completes.
Raises:
UserWarning: If model is not properly setup
"""
_logger.info(f"{self.config['model_type']} RUN ...")
os.environ['path'] = join_norm(self.config['r_executable'])+';'+os.environ['path']
cmd = 'Rscript'
# Script that opens the model and runs it
with open(join_norm(self.local_directory, "vemodel_runner.R"), "wt") as r_script:
r_script.write(f"""
thismodel <- openModel("{r_join_norm(self.local_directory, self.modelname)}")
thismodel$run("reset")
""")
# The subprocess.run command runs a command line tool. The
# name of the command line tool, plus all the command line arguments
# for the tool, are given as a list of strings, not one string.
# The `cwd` argument sets the current working directory from which the
# command line tool is launched. Setting `capture_output` to True
# will capture both stdout and stderr from the command line tool, and
# make these available in the result to facilitate debugging.
self.last_run_result = subprocess.run(
[cmd, 'vemodel_runner.R'],
cwd=self.local_directory,
capture_output=True,
)
##Add errors log
if self.last_run_result.returncode:
raise subprocess.CalledProcessError(
self.last_run_result.returncode,
self.last_run_result.args,
self.last_run_result.stdout,
self.last_run_result.stderr,
)
else:
with open(join_norm(self.local_directory, self.modelname, 'results', 'stdout.log'), 'wb') as slog:
slog.write(self.last_run_result.stdout)
_logger.info(f"{self.config['model_type']} RUN complete")
def last_run_logs(self, output=None):
"""
Display the logs from the last run.
"""
if output is None:
output = print
def to_out(x):
if isinstance(x, bytes):
output(x.decode())
else:
output(x)
try:
last_run_result = self.last_run_result
except AttributeError:
output("no run stored")
else:
if last_run_result.stdout:
output("=== STDOUT ===")
to_out(last_run_result.stdout)
if last_run_result.stderr:
output("=== STDERR ===")
to_out(last_run_result.stderr)
output("=== END OF LOG ===")
def post_process(self, params=None, measure_names=None, output_path=None):
"""
Runs post processors associated with particular performance measures.
This method is the place to conduct automatic post-processing
of core model run results, in particular any post-processing that
is expensive or that will write new output files into the core model's
output directory. The core model run should already have
been completed using `setup` and `run`. If the relevant performance
measures do not require any post-processing to create (i.e. they
can all be read directly from output files created during the core
model run itself) then this method does not need to be overloaded
for a particular core model implementation.
Args:
params (dict):
Dictionary of experiment variables, with keys as variable names
and values as the experiment settings. Most post-processing
scripts will not need to know the particular values of the
inputs (exogenous uncertainties and policy levers), but this
method receives the experiment input parameters as an argument
in case one or more of these parameter values needs to be known
in order to complete the post-processing. In this demo, the
params are not needed, and the argument is optional.
measure_names (List[str]):
List of measures to be processed. Normally for the first pass
of core model run experiments, post-processing will be completed
for all performance measures. However, it is possible to use
this argument to give only a subset of performance measures to
post-process, which may be desirable if the post-processing
of some performance measures is expensive. Additionally, this
method may also be called on archived model results, allowing
it to run to generate only a subset of (probably new) performance
measures based on these archived runs. In this demo, the
the argument is optional; if not given, all measures will be
post-processed.
output_path (str, optional):
Path to model outputs. If this is not given (typical for the
initial run of core model experiments) then the local/default
model directory is used. This argument is provided primarily
to facilitate post-processing archived model runs to make new
performance measures (i.e. measures that were not in-scope when
the core model was actually run).