-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconstruct_topics_for_ui.py
executable file
·424 lines (321 loc) · 17.7 KB
/
construct_topics_for_ui.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
#!/usr/bin/env python3
from tira.rest_api_client import Client
from tira.tirex import IRDS_TO_TIREX_DATASET
from tira.ir_datasets_util import ir_dataset_from_tira_fallback_to_original_ir_datasets
from tqdm import tqdm
import ir_measures
ir_datasets = ir_dataset_from_tira_fallback_to_original_ir_datasets()
from statistics import median
import json
import numpy as np
from construct_indexes import parse_run_details, extract_from_remote
import pandas as pd
import gzip
import os
from diffir import WeightBuilder
from diffir.run import MainTask
tira = Client()
IRDS_TO_TIREX_DATASET['ir-lab-sose-2024/ir-acl-anthology-20240504-training'] = 'ir-acl-anthology-20240504-training'
IRDS_TO_TIREX_DATASET['ir-lab-sose-2024/ir-acl-anthology-topics-koeln-20240614-in-progress-test'] = 'ir-acl-anthology-topics-koeln-20240614-in-progress-test'
IRDS_TO_TIREX_DATASET['ir-lab-sose-2024/ir-acl-anthology-topics-leipzig-20240423-test'] = 'ir-acl-anthology-topics-leipzig-20240423-test'
IRDS_TO_TIREX_DATASET['ir-lab-sose-2024/ir-acl-anthology-topics-augsburg-20240525_0-test'] = 'ir-acl-anthology-topics-augsburg-20240525_0-test'
ALTERNATIVES = {
'ir-lab-sose-2024/ir-acl-anthology-topics-koeln-20240614-in-progress-test': 'ir-lab-sose-2024/ir-acl-anthology-topics-koeln-20240614-test'
}
diffir = MainTask(measure='qrel', weight={"weights_1": None, "weights_2": None})
datasets = [
'ir-lab-sose-2024/ir-acl-anthology-20240504-training',
'ir-lab-sose-2024/ir-acl-anthology-topics-koeln-20240614-in-progress-test',
'ir-lab-sose-2024/ir-acl-anthology-topics-augsburg-20240525_0-test',
'ir-lab-sose-2024/ir-acl-anthology-topics-leipzig-20240423-test'
]
datasets = {i: ir_datasets.load(i) for i in datasets}
def parse_jsonl(file_name, field):
ret = {}
for l in open(file_name, 'r'):
l = json.loads(l)
ret[l['qid']] = l[field]
return ret
alternative_descriptions = {
'ir-lab-sose-2024/ir-acl-anthology-topics-koeln-20240614-in-progress-test': parse_jsonl('./construct_indices/descriptions.jsonl', 'description'),
'ir-lab-sose-2024/ir-acl-anthology-topics-augsburg-20240525_0-test': parse_jsonl('./construct_indices/augsburg-descriptions.jsonl', 'description'),
'ir-lab-sose-2024/ir-acl-anthology-topics-leipzig-20240423-test': parse_jsonl('./construct_indices/leipzig-descriptions.jsonl', 'description'),
}
alternative_narratives = {
'ir-lab-sose-2024/ir-acl-anthology-topics-koeln-20240614-in-progress-test': parse_jsonl('./construct_indices/narratives.jsonl', 'narrative'),
'ir-lab-sose-2024/ir-acl-anthology-topics-augsburg-20240525_0-test': parse_jsonl('./construct_indices/augsburg-narratives.jsonl', 'narrative'),
'ir-lab-sose-2024/ir-acl-anthology-topics-leipzig-20240423-test': parse_jsonl('./construct_indices/leipzig-narratives.jsonl', 'narrative'),
}
dataset_to_docsstore = {i: ir_datasets.load(i).docs_store() for i in tqdm(datasets, 'Load docsstores.')}
datasets_to_index = {
'ir-lab-sose-2024/ir-acl-anthology-20240504-training': 'static/indexes/ir-lab-sose-2024.json.gz',
'ir-lab-sose-2024/ir-acl-anthology-topics-koeln-20240614-in-progress-test': 'static/indexes/ir-lab-sose-2024.json.gz',
'ir-lab-sose-2024/ir-acl-anthology-topics-leipzig-20240423-test': 'static/indexes/ir-lab-sose-2024.json.gz',
'ir-lab-sose-2024/ir-acl-anthology-topics-augsburg-20240525_0-test': 'static/indexes/ir-lab-sose-2024.json.gz',
}
qrels = {n: list(d.qrels_iter()) for n, d in datasets.items()}
MEASURES = [ir_measures.nDCG@10, ir_measures.P@10, ir_measures.R@100, ir_measures.Judged@10]
# We only report the median
RANK_NOT_RETRIEVED = 99999
tira_runs = [
#BASELINES FROM ir-tutors:
'ir-lab-sose-2024/tira-ir-starter/BM25 (tira-ir-starter-pyterrier)',
'ir-lab-sose-2024/tira-ir-starter/DirichletLM (tira-ir-starter-pyterrier)',
'ir-lab-sose-2024/tira-ir-starter/PL2 (tira-ir-starter-pyterrier)',
'ir-lab-sose-2024/tira-ir-starter/LGD (tira-ir-starter-pyterrier)',
'ir-lab-sose-2024/tira-ir-starter/Js_KLs (tira-ir-starter-pyterrier)',
'ir-lab-sose-2024/tira-ir-starter/MonoT5 Base (tira-ir-starter-gygaggle)',
'ir-lab-sose-2024/tira-ir-starter/ColBERT Re-Rank (tira-ir-starter-pyterrier)',
'ir-lab-sose-2024/tira-ir-starter/TASB msmarco-distilbert-base-cos (tira-ir-starter-beir)',
'ir-lab-sose-2024/fschlatt/sparse-cross-encoder-4-512',
'ir-lab-sose-2024/fschlatt/castorini-list-in-t5-150',
'ir-lab-sose-2024/fschlatt/rank-zephyr',
'ir-lab-sose-2024/naverlabseurope/Splade (re-ranker)',
# Jena
'ir-lab-sose-2024/tinyfsu/tiny-fsu-bert',
'ir-lab-sose-2024/tinyfsu/append-term-retrieval',
'ir-lab-sose-2024/tinyfsu/strong-sole',
# Leipzig
'ir-lab-sose-2024/needthegrade/bigramsfinal2',
'ir-lab-sose-2024/needthegrade/bigramsfinal',
'ir-lab-sose-2024/gruppe-840/paper-shack',
'ir-lab-sose-2024/gruppe-840/stone-gauge',
'ir-lab-sose-2024/ir-sose-24-1/tender-button',
'ir-lab-sose-2024/ir-sose-24-1/syrupy-knot',
'ir-lab-sose-2024/ir-sose-24-6/absolute-cistern',
'ir-lab-sose-2024/ir-sose-24-6/flashed-strategy',
'ir-lab-sose-2024/gruppe-10/formal-locker',
'ir-lab-sose-2024/gruppe-10/bisque-sempre',
'ir-lab-sose-2024/eric-martin-malcolm-till/cloying-mercury',
'ir-lab-sose-2024/eric-martin-malcolm-till/progressive-play',
'ir-lab-sose-2024/eric-martin-malcolm-till/obsolete-trie',
'ir-lab-sose-2024/eric-martin-malcolm-till/zesty-light',
'ir-lab-sose-2024/eric-martin-malcolm-till/radiant-cylinder',
'ir-lab-sose-2024/ir-sose-24-5/damaged-program',
'ir-lab-sose-2024/ir-sose-24-5/furious-river',
'ir-lab-sose-2024/ir-sose-24-8/sluggish-gain',
'ir-lab-sose-2024/ir-sose-24-8/hard-frame',
'ir-lab-sose-2024/ir-sose-24-8/acute-vector',
# 'ir-lab-sose-2024//', # running
]
LINKS = json.load(open('ui/src/system-links.json'))
tira_run_cache = {i: {} for i in datasets}
def process_dataset(dataset_name):
dataset = datasets[dataset_name]
ret = {}
for i in dataset.queries_iter():
ret[str(i.query_id)] = {"dataset": dataset_name, "query_id": str(i.query_id), "default_text": i.default_text()}
for tira_run in tqdm(tira_runs, desc=f"Processing {dataset_name}"):
run = ir_measures.read_trec_run(load_run(tira_run, dataset_name))
for i in ir_measures.iter_calc(MEASURES, qrels[dataset_name], run):
measure = str(i.measure)
qid = str(i.query_id)
if qid not in ret:
continue
if 'min_' + measure not in ret[qid] or ret[qid]['min_' + measure] > i.value:
ret[qid]['min_' + measure] = i.value
if 'max_' +measure not in ret[qid] or ret[qid]['max_' + measure] < i.value:
ret[qid]['max_' + measure] = i.value
if 'median_' + measure not in ret[qid]:
ret[qid]['median_' + measure] = []
ret[qid]['median_' + measure] += [i.value]
for i in ret:
for j in MEASURES:
if 'median_' + str(j) in ret[i]:
ret[i]['var_' + str(j)] = np.var(ret[i]['median_' + str(j)])
ret[i]['median_' + str(j)] = median(ret[i]['median_' + str(j)])
for i in ret:
for j in MEASURES:
for t in ['min_', 'max_', 'median_', 'var_']:
if t + str(j) in ret[i]:
ret[i][t + str(j)] = float("{:.3f}".format(ret[i][t + str(j)]))
return [i for i in ret.values() if len(i) > 3]
def relevance_vector(qid, run, qrels):
ret = []
qrels = {i.doc_id: i.relevance for i in qrels if i.query_id == qid}
for i in run:
if len(ret) > 10:
break
if str(i.query_id) == qid:
# TODO: Add unit test that run is already sorted.
ret += [str(qrels.get(i.doc_id, 'U'))]
return ret
def load_run(tira_run, dataset_name):
if tira_run in tira_run_cache[dataset_name]:
return tira_run_cache[dataset_name][tira_run]
import time
time.sleep(.5)
try:
tira_run_cache[dataset_name][tira_run] = tira.get_run_output(tira_run, IRDS_TO_TIREX_DATASET[dataset_name]) + '/run.txt'
except Exception as e:
if dataset_name not in ALTERNATIVES:
raise e
try:
tira_run_cache[dataset_name][tira_run] = tira.get_run_output(tira_run, ALTERNATIVES[dataset_name]) + '/run.txt'
except:
print('Error with ' + tira_run + ' on ' + dataset_name + '.')
raise e
return tira_run_cache[dataset_name][tira_run]
def create_run_overview(dataset_name):
ret = []
for tira_run in tqdm(tira_runs, desc=f"Construct details on runs: {dataset_name}"):
run = [i for i in ir_measures.read_trec_run(load_run(tira_run, dataset_name))]
run_entry = {'dataset': dataset_name, 'team': tira_run.split('/')[1], 'run': tira_run.split('/')[2], 'tira_run': tira_run, 'link': LINKS[tira_run]}
for k,v in ir_measures.calc_aggregate(MEASURES, qrels[dataset_name], run).items():
run_entry[str(k)] = float("{:.3f}".format(v))
ret += [run_entry]
return ret
def create_run_details(dataset_name):
dataset = datasets[dataset_name]
ret = {}
qid_to_default_text = {str(i.query_id): i.default_text() for i in dataset.queries_iter()}
qid_to_query = {str(i.query_id): i for i in dataset.queries_iter()}
doc_id_to_offset = json.load(gzip.open(datasets_to_index[dataset_name], 'rt'))
for tira_run in tqdm(tira_runs, desc=f"Construct details on runs: {dataset_name}"):
run = [i for i in ir_measures.read_trec_run(load_run(tira_run, dataset_name))]
for i in ir_measures.iter_calc(MEASURES, qrels[dataset_name], run):
measure = str(i.measure)
qid = str(i.query_id)
if qid not in qid_to_default_text:
continue
if qid not in ret:
ret[qid] = {"dataset": dataset_name, "qid": qid, "default_text": qid_to_default_text[qid], 'runs': {}}
if tira_run not in ret[qid]['runs']:
ret[qid]['runs'][tira_run] = {'name': tira_run}
ret[qid]['runs'][tira_run][measure] = float("{:.3f}".format(i.value))
run_with_ranks = run_with_derived_rank(load_run(tira_run, dataset_name))
try:
run_with_ranks = run_with_ranks[run_with_ranks['rank'] <= 10]
except:
pass
for qid in ret:
ret[qid]['runs'][tira_run]['relevance'] = relevance_vector(qid, run, qrels[dataset_name])
try:
ret[qid]['runs'][tira_run]['docs'] = [{'doc_id': j.doc_id, 'doc_id_to_offset': doc_id_to_offset[j.doc_id]} for j in run if str(j.query_id) == str(qid)][:10]
ret[qid]['runs'][tira_run]['ranking'] = [{'rank': i['rank'], 'score': i['score'], 'doc_id': i['doc_id']} for _, i in run_with_ranks[run_with_ranks['query_id'].astype(str) == str(qid)].iterrows()]
except:
ret[qid]['runs'][tira_run]['docs'] = []
ret[qid]['runs'][tira_run]['ranking'] = []
for qid in ret:
ret[qid]['runs'] = [i for i in ret[qid]['runs'].values()]
docstore = dataset_to_docsstore[dataset_name]
for qid in tqdm(ret, 'Generate snippets.'):
doc_ids = set()
for qrel in qrels[dataset_name]:
if str(qrel.query_id) == str(qid):
doc_ids.add(qrel.doc_id)
for run in ret[qid]['runs']:
doc_ids.update([i['doc_id'] for i in run['ranking']])
snippets = {}
for doc_id in doc_ids:
# from diffir: https://github.com/capreolus-ir/diffir/blob/master/diffir/run.py#L147C32-L147C38
doc = docstore.get(doc_id)
if not doc:
snippets[doc_id] = {'snippet': '', 'weights': {}}
continue
weights = diffir.weight.score_document_regions(qid_to_query[qid], doc, 0)
snippet = diffir.find_snippet(weights, doc)
assert snippet['field'] == 'text'
if snippet['start'] != 0:
snippet['weights'] = [[i[0] + 3, i[1] + 3, i[2]] for i in snippet['weights']]
text = ('' if snippet['start'] == 0 else '...') + doc.text[snippet['start']: snippet['stop']] + ('' if snippet['stop'] >= (len(doc.text) - 20) else '...')
snippets[doc_id] = {'snippet': text, 'weights': snippet['weights']}
ret[qid]['docs'] = snippets
return [i for i in ret.values()]
def run_with_derived_rank(run):
try:
df = pd.DataFrame([{'query_id': i.query_id, 'doc_id': i.doc_id, 'score': i.score} for i in ir_measures.read_trec_run(run)])
df = df.sort_values(["query_id", "score", "doc_id"], ascending=[True,False,False]).reset_index()
df["rank"] = 1
df["rank"] = df.groupby("query_id")["rank"].cumsum()
return df
except:
return pd.DataFrame()
def create_qrel_details(dataset_name, run_files):
ret = {}
run_to_qid_to_docid_to_rank = {i: {} for i in run_files}
for run_name in tqdm(run_files, 'Analyse runs for qrel details'):
for _, i in run_with_derived_rank(run_files[run_name]).iterrows():
if i.query_id not in run_to_qid_to_docid_to_rank[run_name]:
run_to_qid_to_docid_to_rank[run_name][i.query_id] = {}
if i.doc_id not in run_to_qid_to_docid_to_rank[run_name][i.query_id]:
run_to_qid_to_docid_to_rank[run_name][i.query_id][i.doc_id] = int(i['rank'])
doc_id_to_offset = json.load(gzip.open(datasets_to_index[dataset_name], 'rt'))
for i in qrels[dataset_name]:
qid = str(i.query_id)
if qid not in ret:
ret[qid] = {"dataset": dataset_name, "qid": qid, 'qrels': []}
if i.doc_id not in doc_id_to_offset:
continue
ranks = [run_to_qid_to_docid_to_rank[run_name][qid].get(i.doc_id, RANK_NOT_RETRIEVED) for run_name in run_files if qid in run_to_qid_to_docid_to_rank[run_name]]
median_rank, retrieved_in_100, retrieved_in_10 = None, None, None
if ranks:
median_rank = median(ranks)
retrieved_in_100 = len([i for i in ranks if i <= 100])
retrieved_in_10 = len([i for i in ranks if i <= 10])
ret[qid]['qrels'] += [{'qid': i.query_id, 'relevance': i.relevance, 'doc_id': i.doc_id, 'retrieved_in_100': retrieved_in_100, 'median_rank': median_rank, 'retrieved_in_10': retrieved_in_10, 'doc_id_to_offset': doc_id_to_offset[i.doc_id]}]
return [i for i in ret.values()]
def main():
static_indexes = json.load(open('ui/src/document_indexes.json'))
example_docs = {}
for dataset_name in datasets:
for run in tqdm(tira_runs, f'Ensure runs available on "{dataset_name}".'):
if not os.path.isfile(load_run(run, dataset_name)):
raise ValueError(f'Could not process {run} on {dataset_name}. Does not exist: ' + load_run(run, dataset_name))
for dataset in datasets:
with gzip.open(datasets_to_index[dataset], 'rt') as f:
print(dataset)
l = f.read(1000)
l = json.loads("{" + l[1:].split('}')[0] + '}}')
doc_id = list(l.keys())[0]
example_doc = json.loads(extract_from_remote(static_indexes[datasets_to_index[dataset]], l[doc_id]['start'], l[doc_id]['end']))
if doc_id != example_doc['docno']:
raise ValueError(f'Expected doc_id {doc_id} but found {example_doc["docno"]}.')
example_docs[dataset] = {doc_id: example_doc}
json.dump(example_docs, open('ui/src/example-documents.json', 'w'), indent=4)
run_overview = []
for dataset_name in datasets:
run_overview += create_run_overview(dataset_name)
json.dump(run_overview, open('ui/src/run_overview.json', 'w'))
runs = []
for dataset_name in datasets:
runs += create_run_details(dataset_name)
with open('ui/run-details.jsonl', 'w') as f:
for l in runs:
f.write(json.dumps(l) + '\n')
qrels = []
for dataset_name in datasets:
run_name_to_run_file = {i: load_run(i, dataset_name) for i in tira_runs}
qrels += create_qrel_details(dataset_name, run_name_to_run_file)
with open('ui/qrel-details.jsonl', 'w') as f:
for l in qrels:
f.write(json.dumps(l) + '\n')
topics = []
for dataset_name in datasets:
for i in datasets[dataset_name].queries_iter():
topic = {"dataset": dataset_name, "qid": str(i.query_id), "default_text": i.default_text()}
try:
topic['description'] = i.description
topic['narrative'] = i.narrative
except:
pass
if (not topic.get('description') or not topic.get('narrative')) and dataset_name in alternative_descriptions:
topic['description'] = alternative_descriptions[dataset_name][str(i.query_id)]
topic['narrative'] = alternative_narratives[dataset_name][str(i.query_id)]
topics += [topic]
with open('ui/topic-details.jsonl', 'w') as f:
for l in topics:
f.write(json.dumps(l) + '\n')
topics = parse_run_details('ui/topic-details.jsonl')
runs = parse_run_details('ui/run-details.jsonl')
qrels = parse_run_details('ui/qrel-details.jsonl')
data = []
for dataset_name in datasets:
data += process_dataset(dataset_name)
for i in data:
i['run_details'] = {'start': runs[i['dataset']][i['query_id']]['start'], 'end': runs[i['dataset']][i['query_id']]['end'] - 1, 'path': 'run-details.jsonl'}
i['qrel_details'] = {'start': qrels[i['dataset']][i['query_id']]['start'], 'end': qrels[i['dataset']][i['query_id']]['end'] - 1, 'path': 'qrel-details.jsonl'}
i['topic_details'] = {'start': topics[i['dataset']][i['query_id']]['start'], 'end': topics[i['dataset']][i['query_id']]['end'] - 1, 'path': 'qrel-details.jsonl'}
json.dump(data, open('ui/src/topics.json', 'w'), indent=4)
if __name__ == '__main__':
main()