forked from PaddlePaddle/PaddleDetection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvoc_loader.py
267 lines (243 loc) · 9.47 KB
/
voc_loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import numpy as np
import xml.etree.ElementTree as ET
def get_roidb(anno_path, sample_num=-1, cname2cid=None, with_background=True):
"""
Load VOC records with annotations in xml directory 'anno_path'
Notes:
${anno_path} must contains xml file and image file path for annotations
Args:
anno_path (str): root directory for voc annotation data
sample_num (int): number of samples to load, -1 means all
cname2cid (dict): the label name to id dictionary
with_background (bool): whether load background as a class.
if True, total class number will
be 81. default True
Returns:
(records, catname2clsid)
'records' is list of dict whose structure is:
{
'im_file': im_fname, # image file name
'im_id': im_id, # image id
'h': im_h, # height of image
'w': im_w, # width
'is_crowd': is_crowd,
'gt_class': gt_class,
'gt_bbox': gt_bbox,
'gt_poly': gt_poly,
}
'cname2id' is a dict to map category name to class id
"""
data_dir = os.path.dirname(anno_path)
records = []
ct = 0
existence = False if cname2cid is None else True
if cname2cid is None:
cname2cid = {}
# mapping category name to class id
# background:0, first_class:1, second_class:2, ...
with open(anno_path, 'r') as fr:
while True:
line = fr.readline()
if not line:
break
img_file, xml_file = [os.path.join(data_dir, x) \
for x in line.strip().split()[:2]]
if not os.path.isfile(xml_file):
continue
tree = ET.parse(xml_file)
if tree.find('id') is None:
im_id = np.array([ct])
else:
im_id = np.array([int(tree.find('id').text)])
objs = tree.findall('object')
im_w = float(tree.find('size').find('width').text)
im_h = float(tree.find('size').find('height').text)
gt_bbox = np.zeros((len(objs), 4), dtype=np.float32)
gt_class = np.zeros((len(objs), 1), dtype=np.int32)
gt_score = np.ones((len(objs), 1), dtype=np.float32)
is_crowd = np.zeros((len(objs), 1), dtype=np.int32)
difficult = np.zeros((len(objs), 1), dtype=np.int32)
for i, obj in enumerate(objs):
cname = obj.find('name').text
if not existence and cname not in cname2cid:
# the background's id is 0, so need to add 1.
cname2cid[cname] = len(cname2cid) + int(with_background)
elif existence and cname not in cname2cid:
raise KeyError(
'Not found cname[%s] in cname2cid when map it to cid.' %
(cname))
gt_class[i][0] = cname2cid[cname]
_difficult = int(obj.find('difficult').text)
x1 = float(obj.find('bndbox').find('xmin').text)
y1 = float(obj.find('bndbox').find('ymin').text)
x2 = float(obj.find('bndbox').find('xmax').text)
y2 = float(obj.find('bndbox').find('ymax').text)
x1 = max(0, x1)
y1 = max(0, y1)
x2 = min(im_w - 1, x2)
y2 = min(im_h - 1, y2)
gt_bbox[i] = [x1, y1, x2, y2]
is_crowd[i][0] = 0
difficult[i][0] = _difficult
voc_rec = {
'im_file': img_file,
'im_id': im_id,
'h': im_h,
'w': im_w,
'is_crowd': is_crowd,
'gt_class': gt_class,
'gt_score': gt_score,
'gt_bbox': gt_bbox,
'gt_poly': [],
'difficult': difficult
}
if len(objs) != 0:
records.append(voc_rec)
ct += 1
if sample_num > 0 and ct >= sample_num:
break
assert len(records) > 0, 'not found any voc record in %s' % (anno_path)
return [records, cname2cid]
def load(anno_path, sample_num=-1, use_default_label=True,
with_background=True):
"""
Load VOC records with annotations in
xml directory 'anno_path'
Notes:
${anno_path} must contains xml file and image file path for annotations
Args:
@anno_path (str): root directory for voc annotation data
@sample_num (int): number of samples to load, -1 means all
@use_default_label (bool): whether use the default mapping of label to id
@with_background (bool): whether load background as a class.
if True, total class number will
be 81. default True
Returns:
(records, catname2clsid)
'records' is list of dict whose structure is:
{
'im_file': im_fname, # image file name
'im_id': im_id, # image id
'h': im_h, # height of image
'w': im_w, # width
'is_crowd': is_crowd,
'gt_class': gt_class,
'gt_bbox': gt_bbox,
'gt_poly': gt_poly,
}
'cname2id' is a dict to map category name to class id
"""
data_dir = os.path.dirname(anno_path)
# mapping category name to class id
# if with_background is True:
# background:0, first_class:1, second_class:2, ...
# if with_background is False:
# first_class:0, second_class:1, ...
records = []
ct = 0
cname2cid = {}
if not use_default_label:
label_path = os.path.join(data_dir, 'label_list.txt')
with open(label_path, 'r') as fr:
label_id = int(with_background)
for line in fr.readlines():
cname2cid[line.strip()] = label_id
label_id += 1
else:
cname2cid = pascalvoc_label(with_background)
with open(anno_path, 'r') as fr:
while True:
line = fr.readline()
if not line:
break
img_file, xml_file = [os.path.join(data_dir, x) \
for x in line.strip().split()[:2]]
if not os.path.isfile(xml_file):
continue
tree = ET.parse(xml_file)
if tree.find('id') is None:
im_id = np.array([ct])
else:
im_id = np.array([int(tree.find('id').text)])
objs = tree.findall('object')
im_w = float(tree.find('size').find('width').text)
im_h = float(tree.find('size').find('height').text)
gt_bbox = np.zeros((len(objs), 4), dtype=np.float32)
gt_class = np.zeros((len(objs), 1), dtype=np.int32)
gt_score = np.ones((len(objs), 1), dtype=np.float32)
is_crowd = np.zeros((len(objs), 1), dtype=np.int32)
difficult = np.zeros((len(objs), 1), dtype=np.int32)
for i, obj in enumerate(objs):
cname = obj.find('name').text
gt_class[i][0] = cname2cid[cname]
_difficult = int(obj.find('difficult').text)
x1 = float(obj.find('bndbox').find('xmin').text)
y1 = float(obj.find('bndbox').find('ymin').text)
x2 = float(obj.find('bndbox').find('xmax').text)
y2 = float(obj.find('bndbox').find('ymax').text)
x1 = max(0, x1)
y1 = max(0, y1)
x2 = min(im_w - 1, x2)
y2 = min(im_h - 1, y2)
gt_bbox[i] = [x1, y1, x2, y2]
is_crowd[i][0] = 0
difficult[i][0] = _difficult
voc_rec = {
'im_file': img_file,
'im_id': im_id,
'h': im_h,
'w': im_w,
'is_crowd': is_crowd,
'gt_class': gt_class,
'gt_score': gt_score,
'gt_bbox': gt_bbox,
'gt_poly': [],
'difficult': difficult
}
if len(objs) != 0:
records.append(voc_rec)
ct += 1
if sample_num > 0 and ct >= sample_num:
break
assert len(records) > 0, 'not found any voc record in %s' % (anno_path)
return [records, cname2cid]
def pascalvoc_label(with_background=True):
labels_map = {
'aeroplane': 1,
'bicycle': 2,
'bird': 3,
'boat': 4,
'bottle': 5,
'bus': 6,
'car': 7,
'cat': 8,
'chair': 9,
'cow': 10,
'diningtable': 11,
'dog': 12,
'horse': 13,
'motorbike': 14,
'person': 15,
'pottedplant': 16,
'sheep': 17,
'sofa': 18,
'train': 19,
'tvmonitor': 20
}
if not with_background:
labels_map = {k: v - 1 for k, v in labels_map.items()}
return labels_map