forked from PaddlePaddle/PaddleDetection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathssd_vgg16_300.yml
427 lines (418 loc) · 15.7 KB
/
ssd_vgg16_300.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
# Architecture of detection, which is also the prefix of data feed module.
architecture: SSD
# Data feed module.
# Data feed in training.
train_feed: SSDTrainFeed
# Data feed in Evaluation.
eval_feed: SSDEvalFeed
# Data feed in infer.
test_feed: SSDTestFeed
# Use GPU or CPU, true by default.
use_gpu: true
# Maximum number of iteration.
max_iters: 400000
# Snapshot period. If training and test at same time, evaluate model at each snapshot_iter. 10000 by default.
snapshot_iter: 10000
# Smooth the log output in specified iterations, 20 by default.
log_smooth_window: 20
# The log in training is displayed once every period.
log_iter: 20
# Evaluation method, COCO and VOC are available.
metric: COCO
# Evaluation mAP calculation method in VOC metric, 11point and integral are available.
map_type: 11point
# The path of final model for evaluation and test.
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/VGG16_caffe_pretrained.tar
# The directory to save models.
save_dir: output
# The path of final model for evaluation and test.
weights: output/ssd_vgg16_300/model_final
# Number of classes, 81 for COCO and 21 for VOC.
num_classes: 81
# SSD architecture, see https://arxiv.org/abs/1512.02325
SSD:
# backbone instance, defined below.
backbone: VGG
# `MultiBoxHead` instance, defined below.
multi_box_head: MultiBoxHead
# fluid.layers.detection_output, Detection Output Layer for SSD.
# This operation is to get the detection results by performing following two steps:
# 1. Decode input bounding box predictions according to the prior boxes.
# 2. Get the final detection results by applying multi-class non maximum suppression (NMS).
# this operation doesn’t clip the final output bounding boxes to the image window.
output_decoder:
# The index of background label, the background label will be ignored.
# If set to -1, then all categories will be considered.
background_label: 0
# Number of total bboxes to be kept per image after NMS.
keep_top_k: 200
# The parameter for adaptive NMS.
nms_eta: 1.0
# The threshold to be used in NMS.
nms_threshold: 0.45
# Maximum number of detections to be kept according to the confidences
# aftern the filtering detections based on score_threshold.
nms_top_k: 400
# Threshold to filter out bounding boxes with low confidence score.
# If not provided, consider all boxes.
score_threshold: 0.01
# VGG backbone, see https://arxiv.org/abs/1409.1556
VGG:
# the VGG net depth (16 or 19
depth: 16
# whether or not extra blocks should be added
with_extra_blocks: true
# in each extra block, params:
# [in_channel, out_channel, padding_size, stride_size, filter_size]
extra_block_filters:
- [256, 512, 1, 2, 3]
- [128, 256, 1, 2, 3]
- [128, 256, 0, 1, 3]
- [128, 256, 0, 1, 3]
# params list of init scale in l2 norm, skip init scale if param is -1.
normalizations: [20., -1, -1, -1, -1, -1]
# fluid.layers.multi_box_head, Generate prior boxes for SSD algorithm.
# Generate `prior_box` according to the inputs list and other parameters
# Each position of the input produce N prior boxes, N is determined by
# the count of min_sizes, max_sizes and aspect_ratios, The size of the box
# is in range(min_size, max_size) interval, which is generated in sequence
# according to the aspect_ratios.
MultiBoxHead:
# the base_size is used to get min_size and max_size according to min_ratio and max_ratio.
base_size: 300
# the aspect ratios of generated prior boxes. The length of input and aspect_ratios must be equal.
aspect_ratios: [[2.], [2., 3.], [2., 3.], [2., 3.], [2.], [2.]]
# the min ratio of generated prior boxes.
min_ratio: 15
# the max ratio of generated prior boxes.
max_ratio: 90
# If len(inputs) <=2, min_sizes must be set up, and the length of min_sizes
# should equal to the length of inputs. Default: None.
min_sizes: [30.0, 60.0, 111.0, 162.0, 213.0, 264.0]
# If len(inputs) <=2, max_sizes must be set up, and the length of min_sizes
# should equal to the length of inputs. Default: None.
max_sizes: [60.0, 111.0, 162.0, 213.0, 264.0, 315.0]
# If step_w and step_h are the same, step_w and step_h can be replaced by steps.
steps: [8, 16, 32, 64, 100, 300]
# Prior boxes center offset. Default: 0.5
offset: 0.5
# Whether to flip aspect ratios. Default:False.
flip: true
# The kernel size of conv2d. Default: 1.
kernel_size: 3
# The padding of conv2d. Default:0.
pad: 1
# Learning rate configuration
LearningRate:
# Base learning rate, 0.01 by default
base_lr: 0.001
# Learning rate schedulers, PiecewiseDecay and LinearWarmup by default
schedulers:
# fluid.layers.piecewise_decay
# Values has higher priority and if values is null, learning rate is multipled by gamma at each stage
- !PiecewiseDecay
gamma: 0.1
milestones: [280000, 360000]
# fluid.layers.linear_lr_warmup
# Start learning rate equals to base_lr * start_factor
- !LinearWarmup
start_factor: 0.3333333333333333
steps: 500
# Optimizer module
OptimizerBuilder:
# fluid.optimizer, Neural network in essence is a Optimization problem .
# With forward computing and back propagation , Optimizer use back-propagation
# gradients to optimize parameters in a neural network.
optimizer:
# Momentum optimizer adds momentum on the basis of SGD ,
# reducing noise problem in the process of random gradient descent.
momentum: 0.9
type: Momentum
# fluid.regularizer
regularizer:
# implements the L2 Weight Decay Regularization
# Small values of L2 can help prevent over fitting the training data.
factor: 0.0005
type: L2
# Data feed module for training
SSDTrainFeed:
# Batch size per device
batch_size: 16
# list of batch transformations to use
batch_transforms: []
# The data buffer size
bufsize: 10
# Dataset module
dataset:
# Dataset directory
dataset_dir: dataset/coco
# Annotation file path
annotation: annotations/instances_train2017.json
# Directory where image files are stored
image_dir: train2017
# Drop last batch if size is uneven, false by default
drop_last: true
# List of data fields needed
fields: [image, gt_box, gt_label]
# list of image dims
image_shape: [3, 300, 300]
# number of workers processes (or threads)
num_workers: 8
# List of sample transformations to use
sample_transforms:
# Transform the image data to numpy format.
- !DecodeImage
# whether to convert BGR to RGB
to_rgb: true # default: true
# whether or not to mixup image and gt_bbbox/gt_score
with_mixup: false # default: false
# Transform the bounding box's coornidates to [0,1].
- !NormalizeBox {}
# modify image brightness,contrast,saturation,hue,reordering channels and etc.
- !RandomDistort
# brightness_lower/ brightness_upper (float): the brightness
# between brightness_lower and brightness_upper
brightness_lower: 0.875
brightness_upper: 1.125
# brightness_prob (float): the probability of changing brightness
brightness_prob: 0.5
# contrast_lower/ contrast_upper (float): the contrast between
# contrast_lower and contrast_lower
contrast_lower: 0.5
contrast_upper: 1.5
# contrast_prob (float): the probability of changing contrast
contrast_prob: 0.5
# count (int): the kinds of doing distrot
count: 4
# hue_lower/ hue_upper (float): the hue between hue_lower and hue_upper
hue_lower: -18
hue_upper: 18
# hue_prob (float): the probability of changing hue
hue_prob: 0.5
# is_order (bool): whether determine the order of distortion
is_order: true
# saturation_lower/ saturation_upper (float): the saturation
# between saturation_lower and saturation_upper
saturation_lower: 0.5
saturation_upper: 1.5
# saturation_prob (float): the probability of changing saturation
saturation_prob: 0.5
#Expand the image and modify bounding box.
# Operators:
# 1. Scale the image weight and height.
# 2. Construct new images with new height and width.
# 3. Fill the new image with the mean.
# 4. Put original imge into new image.
# 5. Rescale the bounding box.
# 6. Determine if the new bbox is satisfied in the new image.
- !ExpandImage
# max_ratio (float): the ratio of expanding
max_ratio: 4
# mean (list): the pixel mean
mean: [104, 117, 123]
# prob (float): the probability of expanding image
prob: 0.5
# Crop the image and modify bounding box.
# Operators:
# 1. Scale the image weight and height.
# 2. Crop the image according to a radom sample.
# 3. Rescale the bounding box.
# 4. Determine if the new bbox is satisfied in the new image.
- !CropImage
# avoid_no_bbox (bool): whether to to avoid the
# situation where the box does not appear.
avoid_no_bbox: false
# batch_sampler (list): Multiple sets of different parameters for cropping.
batch_sampler:
- [1, 1, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0]
- [1, 50, 0.3, 1.0, 0.5, 2.0, 0.1, 0.0]
- [1, 50, 0.3, 1.0, 0.5, 2.0, 0.3, 0.0]
- [1, 50, 0.3, 1.0, 0.5, 2.0, 0.5, 0.0]
- [1, 50, 0.3, 1.0, 0.5, 2.0, 0.7, 0.0]
- [1, 50, 0.3, 1.0, 0.5, 2.0, 0.9, 0.0]
- [1, 50, 0.3, 1.0, 0.5, 2.0, 0.0, 1.0]
# satisfy_all (bool): whether all boxes must satisfy.
satisfy_all: false
# Rescale image to the specified target size, and capped at max_size if max_size != 0.
# If target_size is list, selected a scale randomly as the specified target size.
- !ResizeImage
# Resize method, cv2.INTER_LINEAR(1) by default
interp: 1
# max_size (int): the max size of image
max_size: 0
# target_size (int|list): the target size of image's short side,
# multi-scale training is adopted when type is list.
target_size: 300
# use_cv2 (bool): use the cv2 interpolation method or use PIL interpolation method
use_cv2: false
# Filp the image and bounding box.
# Operators:
# 1. Flip the image numpy.
# 2. Transform the bboxes' x coordinates. (Must judge whether the coordinates are normalized!)
# 3. Transform the segmentations' x coordinates. (Must judge whether the coordinates are normalized!)
- !RandomFlipImage
# is_mask_flip (bool): whether flip the segmentation
is_mask_flip: false
# is_normalized (bool): whether the bbox scale to [0,1]
is_normalized: true
# prob (float): the probability of flipping image
prob: 0.5
# Change the channel
- !Permute
# The format of image, [H, W, C]/[C, H, W], true by default
channel_first: true
# to_bgr (bool): confirm whether to convert RGB to BGR
to_bgr: true
# Normalize the image.
# Operators:
# 1.(optional) Scale the image to [0,1]
# 2. Each pixel minus mean and is divided by std
- !NormalizeImage
# The format of image, [H, W, C]/[C, H, W], true by default
is_channel_first: true
# Whether divide by 255, true by default
is_scale: false
# mean (list): the pixel mean
mean: [104, 117, 123]
# std (list): the pixel variance
std: [1, 1, 1]
# Number of samples, -1 represents all samples. -1 by default
samples: -1
# If samples should be shuffled, true by default
shuffle: true
# If use multi-process, false by default
use_process: true
# Data feed module for Eval
SSDEvalFeed:
# Batch size per device
batch_size: 32
# list of batch transformations to use
batch_transforms: []
# The data buffer size
bufsize: 10
# Dataset module
dataset:
# Dataset directory
dataset_dir: dataset/coco
# Annotation file path
annotation: annotations/instances_val2017.json
# Directory where image files are stored
image_dir: val2017
# Drop last batch if size is uneven, false by default
drop_last: true
# List of data fields needed
fields: [image, im_shape, im_id, gt_box, gt_label, is_difficult]
# list of image dims
image_shape: [3, 300, 300]
# number of workers processes (or threads)
num_workers: 8
# List of sample transformations to use
sample_transforms:
# Transform the image data to numpy format.
- !DecodeImage
# whether to convert BGR to RGB
to_rgb: true # default: true
# whether or not to mixup image and gt_bbbox/gt_score
with_mixup: false # default: false
# Transform the bounding box's coornidates to [0,1].
- !NormalizeBox {}
# Rescale image to the specified target size, and capped at max_size if max_size != 0.
# If target_size is list, selected a scale randomly as the specified target size.
- !ResizeImage
# Resize method, cv2.INTER_LINEAR(1) by default
interp: 1
# max_size (int): the max size of image
max_size: 0
# target_size (int|list): the target size of image's short side,
# multi-scale training is adopted when type is list.
target_size: 300
# use_cv2 (bool): use the cv2 interpolation method or use PIL interpolation method
use_cv2: false
- !Permute
# The format of image, [H, W, C]/[C, H, W], true by default
channel_first: true
# to_bgr (bool): confirm whether to convert RGB to BGR
to_bgr: true
# Normalize the image.
# Operators:
# 1.(optional) Scale the image to [0,1]
# 2. Each pixel minus mean and is divided by std
- !NormalizeImage
# The format of image, [H, W, C]/[C, H, W], true by default
is_channel_first: true
# Whether divide by 255, true by default
is_scale: false
# mean (list): the pixel mean
mean: [104, 117, 123]
# std (list): the pixel variance
std: [1, 1, 1]
# Number of samples, -1 represents all samples. -1 by default
samples: -1
# If samples should be shuffled, true by default
shuffle: false
# If use multi-process, false by default
use_process: false
# Data feed module for test
SSDTestFeed:
# Batch size per device
batch_size: 1
# list of batch transformations to use
batch_transforms: []
# The data buffer size
bufsize: 10
# Dataset module
dataset:
# Annotation file path
annotation: dataset/coco/annotations/instances_val2017.json
# Drop last batch if size is uneven, false by default
drop_last: false
# List of data fields needed
fields: [image, im_id]
# list of image dims
image_shape: [3, 300, 300]
# number of workers processes (or threads)
num_workers: 8
# List of sample transformations to use
sample_transforms:
# Transform the image data to numpy format.
- !DecodeImage
# whether to convert BGR to RGB
to_rgb: true # default: true
# whether or not to mixup image and gt_bbbox/gt_score
with_mixup: false # default: false
# Rescale image to the specified target size, and capped at max_size if max_size != 0.
# If target_size is list, selected a scale randomly as the specified target size.
- !ResizeImage
# Resize method, cv2.INTER_LINEAR(1) by default
interp: 1
# max_size (int): the max size of image
max_size: 0
# target_size (int|list): the target size of image's short side,
# multi-scale training is adopted when type is list.
target_size: 300
# use_cv2 (bool): use the cv2 interpolation method or use PIL interpolation method
use_cv2: false
- !Permute
# The format of image, [H, W, C]/[C, H, W], true by default
channel_first: true
# to_bgr (bool): confirm whether to convert RGB to BGR
to_bgr: true
# Normalize the image.
# Operators:
# 1.(optional) Scale the image to [0,1]
# 2. Each pixel minus mean and is divided by std
- !NormalizeImage
# The format of image, [H, W, C]/[C, H, W], true by default
is_channel_first: true
# Whether divide by 255, true by default
is_scale: false
# mean (list): the pixel mean
mean: [104, 117, 123]
# std (list): the pixel variance
std: [1, 1, 1]
# Number of samples, -1 represents all samples. -1 by default
samples: -1
# If samples should be shuffled, true by default
shuffle: false
# If use multi-process, false by default
use_process: false