-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgpx_data_analysis.py
37 lines (31 loc) · 1.11 KB
/
gpx_data_analysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
import numpy as np
import pandas as pd
from bs4 import BeautifulSoup
def value_check(res):
if res is not None:
return res.text
return np.nan
def gpx_to_dataframe(fname):
# would like speed but would need to calculate from dx/dt
with open(fname) as f:
s = f.read()
soup = BeautifulSoup(s, features='lxml')
trackpoints = soup.find_all('trkpt')
time = np.zeros(len(trackpoints), dtype='datetime64[s]')
power = np.zeros(len(trackpoints))
elevation = np.zeros(len(trackpoints))
cadence = np.zeros(len(trackpoints))
hr = np.zeros(len(trackpoints))
for i, t in enumerate(trackpoints):
time[i] = value_check(t.find('time'))
power[i] = value_check(t.find('power'))
elevation[i] = value_check(t.find('ele'))
hr[i] = value_check(t.find('gpxtpx:hr'))
cadence[i] = value_check(t.find('gpxtpx:cad'))
return pd.DataFrame(
list(zip(time, power, cadence, hr)),
columns=('time', 'power', 'cadence', 'hr'),
)
if __name__ == '__main__':
df = gpx_to_dataframe('Something_like_a_fitness_test.gpx')
print(df.head())