-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathget_duplicate_galaxies.py
46 lines (37 loc) · 1.72 KB
/
get_duplicate_galaxies.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import os
from getpass import getpass
import pandas as pd
import numpy as np
import lib.galaxy_utilities as gu
from panoptes_client import Panoptes, Project, Subject
def find_duplicates():
Panoptes.connect(username='tingard', password=getpass())
gzb_project = Project.find(slug='tingard/galaxy-builder')
subject_sets = []
for set in gzb_project.links.subject_sets:
subject_sets.append(list(set.subjects))
subjects = [j for i in subject_sets for j in i]
subject_set_ids = [[np.int64(j.id) for j in i] for i in subject_sets]
ids = [int(i.id) for i in subjects]
dr7objids = [np.int64(i.metadata.get('SDSS dr7 id', False)) for i in subjects]
pairings = sorted(zip(ids, dr7objids), key=lambda i: i[0])
df = pd.DataFrame(pairings, columns=('subject_id', 'dr7objid'))
df = df[df['dr7objid'] != 0].groupby('subject_id').max()
n_sids = len(df)
n_dr7ids = len(df.groupby('dr7objid'))
print('{} unique subject ids'.format(n_sids))
print('{} unique dr7 object ids'.format(n_dr7ids))
print('{} duplicate galaxies'.format(n_sids - n_dr7ids))
groups = np.array([np.concatenate(([i[0]], i[1].index.values)) for i in df.groupby('dr7objid') if len(i[1]) > 1])
# okay, what subject sets are our duplicates?
s1 = gzb_project.links.subject_sets[
np.argmax([np.all(np.isin(subject_set_ids[i], groups[:, 1])) for i in range(len(subject_set_ids))])
]
s2 = gzb_project.links.subject_sets[
np.argmax([np.all(np.isin(subject_set_ids[i], groups[:, 2])) for i in range(len(subject_set_ids))])
]
print(s1, s2)
return groups
groups = find_duplicates()
np.save('lib/duplicate_galaxies.npy', groups)
np.savetxt('lib/duplicate_galaxies.csv', groups, delimiter=',')