-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathesalib2.py
459 lines (355 loc) · 14.3 KB
/
esalib2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
#!/usr/bin/env python
# coding: utf-8
"""
esalib2.esalib2
~~~~~~~~~~~~~~~
A description which can be long and explain the complete
functionality of this module even with indented code examples.
Class/Function however should not be documented here.
:copyright: Lukas Zilka (2013)
:license: Apache License Version 2.0, January 2004 http://www.apache.org/licenses
"""
import os
import bz2
import time
from collections import Counter
import sqlite3
import struct
import math
import datetime
import re
import xml.etree.cElementTree as ET
import wiki_extractor
import porter
# run pdb when error occurs
import pdberr
pdberr.init()
def binarize(lst):
"""Convert a list of (int, float) tuples into a binary string."""
res = []
for item in lst:
res.append(struct.pack('if', *item))
return "".join(res)
def sliding_window_filter(doc_list, window_size=100, window_thresh=0.05):
"""Given a list of documents and their scores, build a list that does not
contain in the tail values that have changed less during last @window_size
items, than @window_thresh percent of the maximal value."""
res = []
max_score = None
for i, (doc_id, doc_val, ) in enumerate(doc_list):
if max_score is None:
max_score = doc_val
if len(res) >= window_size:
window_change = doc_list[max(0, i - window_size)][1] - doc_list[max(0, i - 1)][1]
if max_score * window_thresh > window_change:
break
res.append((doc_id, doc_val, ))
return res
def normalize_vector(vector, vector_sq_sum=None):
if not vector_sq_sum:
vector_sq_sum = sum(i**2 for i in vector)
for i, (doc_id, val) in enumerate(vector):
vector[i] = (doc_id, val / vector_sq_sum)
class FilterStem:
def __init__(self):
self.stemmer = porter.PorterStemmer()
def __call__(self, tokens):
for token in tokens:
yield self.stemmer.stem(token)
class FilterStopwords:
def __init__(self, sw_set):
self.sw_set = sw_set
@classmethod
def from_set(cls, sw_set):
return FilterStopwords(sw_set)
def __call__(self, tokens):
for token in tokens:
if not token in self.sw_set:
yield token
def filter_lowercase(tokens):
for token in tokens:
yield token.lower()
def filter_gibberish(tokens):
for token in tokens:
yield token
def filter_chain(iterable, chain):
if len(chain) > 0:
my_fltr_fn = chain[0]
return filter_chain(my_fltr_fn(iterable), chain[1:])
else:
return iterable
class ProgressMeasure(object):
def __init__(self, label=None, target=None):
self.cntr = 0
self.last_time = 0
self.label = label
self.target = target
def tick(self):
self.cntr += 1
if time.time() - self.last_time > 1.0:
print datetime.datetime.now(),
if self.label:
print self.label,
if self.target is not None:
print "(%.4f%%)" % (float(self.cntr) / self.target * 100),
print self.cntr
self.last_time = time.time()
class Document(object):
"""Document record of a document from a document collection."""
doc_id = None # unique integer id of the document
title = None # document title
content = None # document text
meta = None # additional metadata
def __init__(self, doc_id, title, content):
self.doc_id = doc_id
self.title = title
self.content = content
class ESATerm(object):
"""Represents a term from the ESA background."""
term_id = None # term integer id
doc_list = None # document list
word_map = None # maps words to
def __init__(self, term_id, doc_list):
self.term_id = term_id
self.doc_list = doc_list
class DocumentIterator(object):
"""Base class for iterating over a document collection."""
def __iter__(self):
"""Goes over the underlying document collection and yields
Document classes."""
raise NotImplementedException("Document iterator needs to implement this method.")
class WikidumpStreamDI(DocumentIterator):
"""Document iterator over the Wikipedia dump."""
def __init__(self, bzname, limit=None):
super(WikidumpStreamDI, self).__init__()
self.bzname = bzname # filename of the bzipped dump
self.limit = limit
def _clean_doc(self, content):
return wiki_extractor.clean(content)
def __iter__(self):
"""Load the dump, decompress it in a streaming fashion, parse it and
yield the Wikipedia articles."""
bzfile = bz2.BZ2File(self.bzname, "r")
# start XML parsing
it = ET.iterparse(bzfile, events=("start", "end", ))
_, root = next(it)
# note the time and counts (for performance measurements)
pm = ProgressMeasure(label="loading wikipedia articles; done: ", target=self.limit)
for i, (ev, el, ) in enumerate(it):
if self.limit is not None and i >= self.limit:
break
if ev == "end" and el.tag.endswith('page'):
try:
doc_id = next(el.iterfind('{http://www.mediawiki.org/xml/export-0.8/}id')).text
title = next(el.iterfind('{http://www.mediawiki.org/xml/export-0.8/}title')).text
content = next(el.iterfind('{http://www.mediawiki.org/xml/export-0.8/}revision/{http://www.mediawiki.org/xml/export-0.8/}text')).text
content = self._clean_doc(content)
yield Document(doc_id=doc_id, title=title, content=content)
except Exception, e:
print "Error processing document", str(e)
root.clear() # throw away the data from the parsed tree, as they are processed
pm.tick()
class WordMap(dict):
def save_idf(self, conn):
curr, save_curr = conn.cursor(), conn.cursor()
res = {}
doc_cnt = float(curr.execute("SELECT count(*) from (select doc_id, count(*) from doc_term_freq group by doc_id)").fetchone()[0])
for term_id, term_cnt in curr.execute("SELECT term_id,count(doc_id) FROM doc_term_freq GROUP BY term_id;"):
idf = math.log(doc_cnt / term_cnt)
save_curr.execute("INSERT INTO term_idf VALUES (?, ?)", (term_id, idf,) )
res[term_id] = idf
return res
def load_idf(self, conn):
curr = conn.cursor()
term_idf = {}
for term_id, idf in curr.execute("SELECT term_id, term_idf FROM term_idf;"):
term_idf[term_id] = idf
return term_idf
def save(self, conn):
save_curr = conn.cursor()
for word, word_id in self.iteritems():
save_curr.execute("INSERT INTO term_wordmap VALUES (?, ?)",
(word, word_id))
class WhitespaceTokenizer(object):
"""For tokenizing the text on whitespaces."""
def tokenize(self, content):
"""Splits the input text into tokens."""
for token in re.findall('[A-Za-z-]*', content):
if len(token) > 0:
yield token
class BackgroundBuilder(object):
"""Build the ESA background."""
# queries for initializing the database
drop_table_stmts = [
"DROP TABLE IF EXISTS doc_term_freq",
"DROP TABLE IF EXISTS term",
"DROP TABLE IF EXISTS term_idf",
"DROP TABLE IF EXISTS term_wordmap",
]
create_table_stmts = [
"CREATE TABLE doc_term_freq (term_id int, doc_id int, freq int)",
"CREATE TABLE term (term_id int, term_vector binary)",
"CREATE TABLE term_idf (term_id int, idf float)",
"CREATE TABLE term_wordmap (term text, term_id int)",
]
def __init__(self, db_file, token_filter_chain):
self.wordmap = WordMap()
self.tokenizer = WhitespaceTokenizer()
self.token_filter_chain = token_filter_chain
self.db_file = db_file
self.conn = None
self._connect_to_db()
def compute_termfrequency(self, text):
"""Given the text compute freqency of each word."""
return Counter(self.tokenize(text)).most_common()
def tokenize(self, text):
"""Split text into tokens."""
for token in filter_chain(self.tokenizer.tokenize(text), self.token_filter_chain):
if not token in self.wordmap: # add token into wordmap if needed
self.wordmap[token] = len(self.wordmap)
yield self.wordmap[token]
def prepare_database(self):
"""Create/drop tables in database to prepare it for building the ESA background."""
curr = self.conn.cursor()
for tbl_stmt in self.drop_table_stmts:
curr.execute(tbl_stmt)
for tbl_stmt in self.create_table_stmts:
curr.execute(tbl_stmt)
def create_index(self, table_name, curr):
"""Instruct the database to create index on the given table."""
curr.execute("CREATE INDEX ndx_dtf ON %s (term_id, freq)" % table_name)
def save_doc_freq(self, curr, doc_id, frq_vector):
"""Save records about term freqency of terms in the given document."""
for term_id, freq in frq_vector:
tf = 1.0 + math.log(freq)
curr.execute("INSERT INTO doc_term_freq VALUES ({term_id}, {doc_id}, {freq})".format(term_id=term_id, freq=tf, doc_id=doc_id))
def save_term(self, curr, term):
"""Insert the term along with its document vector to the database."""
doc_list = sliding_window_filter(term.doc_list) # be
curr.execute("INSERT INTO term VALUES(?, ?)",
(term.term_id, buffer(binarize(doc_list))))
def save_terms(self, term_idf, min_freq=15):
curr = self.conn.cursor()
save_curr = self.conn.cursor()
for term in self.iter_terms(curr, term_idf, min_freq=min_freq):
self.save_term(save_curr, term)
def iter_terms(self, curr, term_idf, min_freq=15):
res = curr.execute("SELECT term_id, doc_id, freq FROM doc_term_freq WHERE freq > ? ORDER BY term_id, freq DESC ", (min_freq, ))
term_rec = None
curr_term = None
curr_doc_list = []
curr_doc_list_sum = 0.0
while True:
term_rec = res.fetchone()
if term_rec is None:
break
if curr_term != term_rec[0] and curr_term is not None:
normalize_vector(curr_doc_list, curr_doc_list_sum)
yield ESATerm(term_id=curr_term, doc_list=curr_doc_list)
curr_doc_list = []
curr_doc_list_sum = 0.0
curr_term = term_rec[0]
tfidf = term_idf[curr_term] * term_rec[2]
curr_doc_list.append((term_rec[1], tfidf, ))
curr_doc_list_sum += tfidf
def _connect_to_db(self):
self.conn = sqlite3.connect(self.db_file)
def load_documents(self, doc_iter):
curr = self.conn.cursor()
for doc in doc_iter:
content = doc.content
term_freq = self.compute_termfrequency(content)
self.save_doc_freq(curr, doc.doc_id, term_freq)
self.create_index("doc_term_freq", curr)
curr.close()
def build(self, doc_iter, skip_load=False, min_freq=15):
if not skip_load:
self.prepare_database()
self.load_documents(doc_iter)
self.conn.commit()
self.wordmap.save(self.conn)
self.conn.commit()
# build idf map
term_idf = self.wordmap.save_idf(self.conn)
self.conn.commit()
else:
term_idf = self.wordmap.load_idf(self.conn)
self.save_terms(term_idf, min_freq=min_freq)
self.conn.commit()
class ESA(object):
def __init__(self, bg_file, token_filter_chain):
self.bg_file = bg_file
self.token_filter_chain = token_filter_chain
self.tokenizer = WhitespaceTokenizer()
self.conn = sqlite3.connect(bg_file)
self.curr = self.conn.cursor()
self.esa_index = None
self.stemmer = None
self._load()
def _load(self):
vectors = self.curr.execute("SELECT term, term_vector FROM term fv LEFT JOIN term_wordmap wm ON wm.term_id = fv.term_id")
self.esa_index = {}
for term, tv_str in vectors:
tv = {}
for i in range(0, len(tv_str), 8):
doc_id, doc_val = struct.unpack('if', tv_str[i:i+8])
tv[doc_id] = doc_val
self.esa_index[term] = tv
def tokenize(self, text):
for word in filter_chain(self.tokenizer.tokenize(text), self.token_filter_chain):
yield word
def get_vector(self, text):
used_dims = set()
used_tvs = []
for token in self.tokenize(text):
new_tv = self.esa_index[token]
used_dims.update(new_tv.keys())
used_tvs.append(new_tv)
res_vec = {}
for dim in used_dims:
res_vec[dim] = sum(tv.get(dim, 0.0) for tv in used_tvs)
return res_vec
def similarity(self, v1, v2):
dims = set(v1.keys() + v2.keys())
res = 0.0
res_norm_v1 = 0.0
res_norm_v2 = 0.0
for dim in dims:
v1_val = v1.get(dim, 0.0)
v2_val = v2.get(dim, 0.0)
res += v1_val * v2_val
res_norm_v1 += v1_val ** 2
res_norm_v2 += v2_val ** 2
return res / math.sqrt(res_norm_v1 * res_norm_v2)
def get_token_filter_chain():
return [
filter_lowercase,
FilterStem(),
FilterStopwords.from_set(set(['a', 'the'])),
filter_gibberish,
]
def test_esa():
esa = ESA("esa_bg.db", token_filter_chain=get_token_filter_chain())
test_lst = [
('four', 'western'),
('princip', 'protest'),
('sleep', 'princip'),
('money', 'sleep'),
('money', 'bank'),
('beautiful day', 'good day'),
('beautiful day', 'bad day'),
]
for w1, w2 in test_lst:
v1 = esa.get_vector(w1)
v2 = esa.get_vector(w2)
print w1, w2, esa.similarity(v1, v2)
def test_build_background():
wsdi = WikidumpStreamDI('/xdisk/devel/esalib/enwiki-20130403-pages-articles.xml.bz2', limit=10000)
bb = BackgroundBuilder("esa_bg.db", token_filter_chain=get_token_filter_chain())
bb.build(wsdi,
skip_load=False,
min_freq=0
)
if __name__ == '__main__':
test_build_background()
test_esa()