-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathexp_elas.py
119 lines (99 loc) · 4.05 KB
/
exp_elas.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
import torch.nn.functional as F
import matplotlib.pyplot as plt
from timeit import default_timer
from utils.utilities3 import *
from utils.adam import Adam
from utils.params import get_args
from model_dict import get_model
import math
import os
torch.manual_seed(0)
np.random.seed(0)
torch.cuda.manual_seed(0)
torch.backends.cudnn.deterministic = True
################################################################
# configs
################################################################
args = get_args()
PATH_Sigma = os.path.join(args.data_path, './Meshes/Random_UnitCell_sigma_10.npy')
PATH_XY = os.path.join(args.data_path, './Meshes/Random_UnitCell_XY_10.npy')
PATH_rr = os.path.join(args.data_path, './Meshes/Random_UnitCell_rr_10.npy')
ntrain = args.ntrain
ntest = args.ntest
N = args.ntotal
in_channels = args.in_dim
out_channels = args.out_dim
batch_size = args.batch_size
learning_rate = args.learning_rate
epochs = args.epochs
step_size = args.step_size
gamma = args.gamma
model_save_path = args.model_save_path
model_save_name = args.model_save_name
################################################################
# models
################################################################
model, model_iphi = get_model(args)
print(count_params(model), count_params(model_iphi))
params = list(model.parameters()) + list(model_iphi.parameters())
################################################################
# load data and data normalization
################################################################
input_rr = np.load(PATH_rr)
input_rr = torch.tensor(input_rr, dtype=torch.float).permute(1, 0)
input_s = np.load(PATH_Sigma)
input_s = torch.tensor(input_s, dtype=torch.float).permute(1, 0).unsqueeze(-1)
input_xy = np.load(PATH_XY)
input_xy = torch.tensor(input_xy, dtype=torch.float).permute(2, 0, 1)
train_rr = input_rr[:ntrain]
test_rr = input_rr[-ntest:]
train_s = input_s[:ntrain]
test_s = input_s[-ntest:]
train_xy = input_xy[:ntrain]
test_xy = input_xy[-ntest:]
print(train_rr.shape, train_s.shape, train_xy.shape)
train_loader = torch.utils.data.DataLoader(torch.utils.data.TensorDataset(train_rr, train_s, train_xy),
batch_size=batch_size,
shuffle=True)
test_loader = torch.utils.data.DataLoader(torch.utils.data.TensorDataset(test_rr, test_s, test_xy),
batch_size=batch_size,
shuffle=False)
################################################################
# training and evaluation
################################################################
optimizer = Adam(params, lr=learning_rate, weight_decay=1e-4)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=step_size, gamma=gamma)
myloss = LpLoss(size_average=False)
N_sample = 1000
for ep in range(epochs):
model.train()
t1 = default_timer()
train_l2 = 0
for rr, sigma, mesh in train_loader:
rr, sigma, mesh = rr.cuda(), sigma.cuda(), mesh.cuda()
samples_x = torch.rand(batch_size, N_sample, 2).cuda() * 3 - 1
optimizer.zero_grad()
out = model(mesh, code=rr, iphi=model_iphi)
samples_xi = model_iphi(samples_x, code=rr)
loss_data = myloss(out.view(batch_size, -1), sigma.view(batch_size, -1))
loss = loss_data
loss.backward()
optimizer.step()
train_l2 += loss_data.item()
scheduler.step()
model.eval()
test_l2 = 0.0
with torch.no_grad():
for rr, sigma, mesh in test_loader:
rr, sigma, mesh = rr.cuda(), sigma.cuda(), mesh.cuda()
out = model(mesh, code=rr, iphi=model_iphi)
test_l2 += myloss(out.view(batch_size, -1), sigma.view(batch_size, -1)).item()
train_l2 /= ntrain
test_l2 /= ntest
t2 = default_timer()
print(ep, t2 - t1, train_l2, test_l2)
if ep % step_size == 0:
if not os.path.exists(model_save_path):
os.makedirs(model_save_path)
print('save model')
torch.save(model.state_dict(), os.path.join(model_save_path, model_save_name))