-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprocess.py
57 lines (44 loc) · 1.55 KB
/
process.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import matplotlib.pyplot as plt
from PIL import Image
import numpy as np
import os
files = os.listdir("./textures")
db = {}
for file in files:
dir = f"./textures/{file}"
image = Image.open(dir)
data = np.asarray(image)/255 # load image in numpy array
data = np.delete(data, -1, axis=2) # remove transparancy
data_r = data.reshape(256, 3) # flatten image
avg = np.sum(data_r, axis=0)/256
db[dir] = avg
for d in os.listdir("./data"):
dir = f"./data/{d}"
image = Image.open(dir)
image = image.convert("RGB")
data = np.asarray(image)/255
shape = np.shape(data)
data = data[shape[0]%16:, shape[1]%16:] # make height and width divisble by 16
shape = np.shape(data)
final = np.zeros_like(data)
def distance(a, b):
sum = 0
for i in range(len(a)):
sum += (a[i] - b[i])**2
return sum
for m in range(shape[0]//16):
for n in range(shape[1]//16):
block = data[m*16:(m+1)*16, n*16:(n+1)*16, :]
avg = np.sum(block.reshape(256, 3), axis=0)/256
min = 3
path = 0
for key in db.keys():
dist = distance(avg, db[key])
if dist < min :
min = dist
path = key
image = np.asarray(Image.open(path))/255
image = np.delete(image, -1, axis=2)
final[m*16:(m+1)*16, n*16:(n+1)*16, :] = image
image = Image.fromarray((final * 255).astype(np.uint8))
image.save(f"./output/{os.path.splitext(d)[0]}.png")