-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy pathcheck_poses_train_imgs.py
executable file
·120 lines (96 loc) · 4.88 KB
/
check_poses_train_imgs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
#!/usr/local/bin/python3
# Author: Tomas Hodan ([email protected])
# Center for Machine Perception, Czech Technical University in Prague
# A script to render 3D object models into the training images. The models are
# rendered at the 6D poses that are associated with the training images.
# The visualizations are saved into the folder specified by "output_dir".
from pytless import inout, renderer, misc
import os
import numpy as np
import scipy.misc
import matplotlib.pyplot as plt
import imageio
obj_ids = [1] # Choose which scene_ids to render. Eg. range(1, 31)
device = 'primesense' # options: 'primesense', 'kinect', 'canon'
model_type = 'cad' # options: 'cad', 'reconst'
im_step = 100 # Consider every im_step-th image
# Path to the T-LESS dataset
# Which you can download using the t-less_download.py script.
data_path = '/Add/your/path/here/t-less_v2'
# Path to the folder in which the images produced by this script will be saved
output_dir = os.path.join(data_path, 'output_check_poses_train_imgs')
# Paths to the elements of the T-LESS dataset
model_path_mask = os.path.join(data_path, 'models_' + model_type, 'obj_{:02d}.ply')
obj_info_path_mask = os.path.join(data_path, 'train_{}', '{:02d}', 'info.yml')
obj_gt_path_mask = os.path.join(data_path, 'train_{}', '{:02d}', 'gt.yml')
rgb_path_mask = os.path.join(data_path, 'train_{}', '{:02d}', 'rgb', '{:04d}.{}')
depth_path_mask = os.path.join(data_path, 'train_{}', '{:02d}', 'depth', '{:04d}.png')
rgb_ext = {'primesense': 'png', 'kinect': 'png', 'canon': 'jpg'}
obj_colors_path = os.path.join('data', 'obj_rgb.txt')
vis_rgb_path_mask = os.path.join(output_dir, '{:02d}_{}_{}_{:04d}_rgb.png')
vis_depth_path_mask = os.path.join(output_dir, '{:02d}_{}_{}_{:04d}_depth_diff.png')
misc.ensure_dir(output_dir)
obj_colors = inout.load_colors(obj_colors_path)
plt.ioff() # Turn interactive plotting off
for obj_id in obj_ids:
# Load object model
model_path = model_path_mask.format(obj_id)
model = inout.load_ply(model_path)
# Load info about the templates (including camera parameters etc.)
obj_info_path = obj_info_path_mask.format(device, obj_id)
obj_info = inout.load_info(obj_info_path)
obj_gt_path = obj_gt_path_mask.format(device, obj_id)
obj_gt = inout.load_gt(obj_gt_path)
for im_id in obj_info.keys():
if im_id % im_step != 0:
continue
print('obj: ' + str(obj_id) + ', device: ' + device + ', im_id: ' + str(im_id))
im_info = obj_info[im_id]
im_gt = obj_gt[im_id]
# Get intrinsic camera parameters and object pose
K = im_info['cam_K']
R = im_gt[0]['cam_R_m2c']
t = im_gt[0]['cam_t_m2c']
# Visualization #1
#-----------------------------------------------------------------------
# Load RGB image
rgb_path = rgb_path_mask.format(device, obj_id, im_id, rgb_ext[device])
rgb = imageio.imread(rgb_path)
# Render RGB image of the object model at the pose associated with
# the training image into a
# surf_color = obj_colors[obj_id]
surf_color = (1, 0, 0)
im_size = (rgb.shape[1], rgb.shape[0])
ren_rgb = renderer.render(model, im_size, K, R, t,
surf_color=surf_color, mode='rgb')
vis_rgb = 0.5 * rgb.astype(np.float) + 0.5 * ren_rgb.astype(np.float)
vis_rgb = vis_rgb.astype(np.uint8)
# Draw the bounding box of the object
vis_rgb = misc.draw_rect(vis_rgb, im_gt[0]['obj_bb'])
# Save the visualization
vis_rgb[vis_rgb > 255] = 255
vis_rgb_path = vis_rgb_path_mask.format(obj_id, device, model_type, im_id)
imageio.imwrite(vis_rgb_path, vis_rgb.astype(np.uint8))
# Visualization #2
#-----------------------------------------------------------------------
if device != 'canon':
# Load depth image
depth_path = depth_path_mask.format(device, obj_id, im_id, rgb_ext[device])
depth = imageio.imread(depth_path) # Unit: 0.1 mm
depth = depth.astype(np.float) * 0.1 # Convert to mm
# Render depth image of the object model at the pose associated
# with the training image
im_size = (depth.shape[1], depth.shape[0])
ren_depth = renderer.render(model, im_size, K, R, t, mode='depth')
# Calculate the depth difference at pixels where both depth maps
# are valid
valid_mask = (depth > 0) * (ren_depth > 0)
depth_diff = valid_mask * (depth - ren_depth.astype(np.float))
# Save the visualization
vis_depth_path = vis_depth_path_mask.format(obj_id, device,
model_type, im_id)
plt.matshow(depth_diff)
plt.title('captured - rendered depth [mm]')
plt.colorbar()
plt.savefig(vis_depth_path, pad=0)
plt.close()