forked from Alfredvc/paac
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpaac.py
executable file
·187 lines (145 loc) · 7.93 KB
/
paac.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
import time
from multiprocessing import Queue
from multiprocessing.sharedctypes import RawArray
from ctypes import c_uint, c_float
from actor_learner import *
import logging
from emulator_runner import EmulatorRunner
from runners import Runners
import numpy as np
class PAACLearner(ActorLearner):
def __init__(self, network_creator, environment_creator, args):
super(PAACLearner, self).__init__(network_creator, environment_creator, args)
self.workers = args.emulator_workers
@staticmethod
def choose_next_actions(network, num_actions, states, session):
network_output_v, network_output_pi = session.run(
[network.output_layer_v,
network.output_layer_pi],
feed_dict={network.input_ph: states})
action_indices = PAACLearner.__sample_policy_action(network_output_pi)
new_actions = np.eye(num_actions)[action_indices]
return new_actions, network_output_v, network_output_pi
def __choose_next_actions(self, states):
return PAACLearner.choose_next_actions(self.network, self.num_actions, states, self.session)
@staticmethod
def __sample_policy_action(probs):
"""
Sample an action from an action probability distribution output by
the policy network.
"""
# Subtract a tiny value from probabilities in order to avoid
# "ValueError: sum(pvals[:-1]) > 1.0" in numpy.multinomial
probs = probs - np.finfo(np.float32).epsneg
action_indexes = [int(np.nonzero(np.random.multinomial(1, p))[0]) for p in probs]
return action_indexes
def _get_shared(self, array, dtype=c_float):
"""
Returns a RawArray backed numpy array that can be shared between processes.
:param array: the array to be shared
:param dtype: the RawArray dtype to use
:return: the RawArray backed numpy array
"""
shape = array.shape
shared = RawArray(dtype, array.reshape(-1))
return np.frombuffer(shared, dtype).reshape(shape)
def train(self):
"""
Main actor learner loop for parallel advantage actor critic learning.
"""
self.global_step = self.init_network()
logging.debug("Starting training at Step {}".format(self.global_step))
counter = 0
global_step_start = self.global_step
total_rewards = []
# state, reward, episode_over, action
variables = [(np.asarray([emulator.get_initial_state() for emulator in self.emulators], dtype=np.uint8)),
(np.zeros(self.emulator_counts, dtype=np.float32)),
(np.asarray([False] * self.emulator_counts, dtype=np.float32)),
(np.zeros((self.emulator_counts, self.num_actions), dtype=np.float32))]
self.runners = Runners(EmulatorRunner, self.emulators, self.workers, variables)
self.runners.start()
shared_states, shared_rewards, shared_episode_over, shared_actions = self.runners.get_shared_variables()
summaries_op = tf.summary.merge_all()
emulator_steps = [0] * self.emulator_counts
total_episode_rewards = self.emulator_counts * [0]
actions_sum = np.zeros((self.emulator_counts, self.num_actions))
y_batch = np.zeros((self.max_local_steps, self.emulator_counts))
adv_batch = np.zeros((self.max_local_steps, self.emulator_counts))
rewards = np.zeros((self.max_local_steps, self.emulator_counts))
states = np.zeros([self.max_local_steps] + list(shared_states.shape), dtype=np.uint8)
actions = np.zeros((self.max_local_steps, self.emulator_counts, self.num_actions))
values = np.zeros((self.max_local_steps, self.emulator_counts))
episodes_over_masks = np.zeros((self.max_local_steps, self.emulator_counts))
start_time = time.time()
while self.global_step < self.max_global_steps:
loop_start_time = time.time()
max_local_steps = self.max_local_steps
for t in range(max_local_steps):
next_actions, readouts_v_t, readouts_pi_t = self.__choose_next_actions(shared_states)
actions_sum += next_actions
for z in range(next_actions.shape[0]):
shared_actions[z] = next_actions[z]
actions[t] = next_actions
values[t] = readouts_v_t
states[t] = shared_states
# Start updating all environments with next_actions
self.runners.update_environments()
self.runners.wait_updated()
# Done updating all environments, have new states, rewards and is_over
episodes_over_masks[t] = 1.0 - shared_episode_over.astype(np.float32)
for e, (actual_reward, episode_over) in enumerate(zip(shared_rewards, shared_episode_over)):
total_episode_rewards[e] += actual_reward
actual_reward = self.rescale_reward(actual_reward)
rewards[t, e] = actual_reward
emulator_steps[e] += 1
self.global_step += 1
if episode_over:
total_rewards.append(total_episode_rewards[e])
episode_summary = tf.Summary(value=[
tf.Summary.Value(tag='rl/reward', simple_value=total_episode_rewards[e]),
tf.Summary.Value(tag='rl/episode_length', simple_value=emulator_steps[e]),
])
self.summary_writer.add_summary(episode_summary, self.global_step)
self.summary_writer.flush()
total_episode_rewards[e] = 0
emulator_steps[e] = 0
actions_sum[e] = np.zeros(self.num_actions)
nest_state_value = self.session.run(
self.network.output_layer_v,
feed_dict={self.network.input_ph: shared_states})
estimated_return = np.copy(nest_state_value)
for t in reversed(range(max_local_steps)):
estimated_return = rewards[t] + self.gamma * estimated_return * episodes_over_masks[t]
y_batch[t] = np.copy(estimated_return)
adv_batch[t] = estimated_return - values[t]
flat_states = states.reshape([self.max_local_steps * self.emulator_counts] + list(shared_states.shape)[1:])
flat_y_batch = y_batch.reshape(-1)
flat_adv_batch = adv_batch.reshape(-1)
flat_actions = actions.reshape(max_local_steps * self.emulator_counts, self.num_actions)
lr = self.get_lr()
feed_dict = {self.network.input_ph: flat_states,
self.network.critic_target_ph: flat_y_batch,
self.network.selected_action_ph: flat_actions,
self.network.adv_actor_ph: flat_adv_batch,
self.learning_rate: lr}
_, summaries = self.session.run(
[self.train_step, summaries_op],
feed_dict=feed_dict)
self.summary_writer.add_summary(summaries, self.global_step)
self.summary_writer.flush()
counter += 1
if counter % (2048 / self.emulator_counts) == 0:
curr_time = time.time()
global_steps = self.global_step
last_ten = 0.0 if len(total_rewards) < 1 else np.mean(total_rewards[-10:])
logging.info("Ran {} steps, at {} steps/s ({} steps/s avg), last 10 rewards avg {}"
.format(global_steps,
self.max_local_steps * self.emulator_counts / (curr_time - loop_start_time),
(global_steps - global_step_start) / (curr_time - start_time),
last_ten))
self.save_vars()
self.cleanup()
def cleanup(self):
super(PAACLearner, self).cleanup()
self.runners.stop()