-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtrain_PGM.py
132 lines (110 loc) · 5.4 KB
/
train_PGM.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import os
import argparse
import itertools
import numpy as np
import math
import torch.optim as optim
from torchvision import datasets,transforms
import torch.utils
from model_PGM import Model
from torch.utils.data import DataLoader
import torch.nn.utils
from data_utility import ToTensor
#For preprocessed data loading,
from data_utility import dataset
from radam import RAdam
model_save_name = 'PGM_ori_best.pt'
optimizer_save_name = 'PGM_ori_best_opt.pt'
def train(model,optimizer,trainloader,validloader,device,args):
avg_loss = 0
count = 0
best_acc = 0
for epoch in range(args.epochs):
for (data,label,meta_target) in trainloader:
data = data.view(-1,16,args.image_size,args.image_size)
label = label.view(-1)
meta_target = meta_target.view(-1,12)
bs = data.size()[0]
data = data.to(device)
label = label.to(device)
meta_target = meta_target.to(device)
optimizer.zero_grad()
loss,_ = model(data,label,meta_target)
loss = torch.sum(loss)
avg_loss += loss.cpu().data.numpy()
loss.backward()
optimizer.step()
count += 1
if count % 100 == 0:
print('Epoch-{}; Count-{}; loss: {} '.format(epoch, count, avg_loss / 100))
avg_loss = 0
if epoch > 0:
model.eval()
total_correct = 0.0
num_samples = 0
for (data,label,meta_target) in validloader:
data = data.view(-1,16,args.image_size,args.image_size)
label = label.view(-1)
num_samples+=label.size(0)
meta_target = meta_target.view(-1,12)
data = data.to(device)
label = label.to(device)
meta_target = meta_target.to(device)
_,score_vec = model(data,label,meta_target)
_,pred = torch.max(score_vec,1)
c = (pred == label).squeeze()
total_correct += torch.sum(c).item()
accuracy = total_correct/num_samples
print('Accuracy:',accuracy,total_correct,num_samples)
model.train()
if epoch > 0 and accuracy > best_acc and args.save_model:
print('saving model')
torch.save(model.state_dict(), os.path.join(args.model_save_path,model_save_name ))
torch.save(optimizer.state_dict(), os.path.join(args.model_save_path,optimizer_save_name ))
best_acc = accuracy
def main():
parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
parser.add_argument('data', metavar='DIR',
help='path to dataset')
parser.add_argument('--batch-size', type=int, default=128, metavar='N',
help='input batch size for training (default: 128)')
parser.add_argument('--batch-size-val', type=int, default=64, metavar='N',
help='input batch size for training (default: 64)')
parser.add_argument('--epochs', type=int, default=1000, metavar='N',
help='number of epochs to train (default: 1000)')
parser.add_argument('--lr', type=float, default=1e-4, metavar='LR',
help='learning rate (default: 1e-4)')
parser.add_argument('--image-size', type=float, default=80, metavar='IMSIZE',
help='input image size (default: 80)')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='disables CUDA training')
parser.add_argument('--multi-gpu', action='store_true', default=False,
help='parallel training on multiple GPUs')
parser.add_argument('--seed', type=int, default=1, metavar='S',
help='random seed (default: 1)')
parser.add_argument('--save-model', action='store_true', default=False,
help='For Saving the current Model')
parser.add_argument('--model-save-path', default='', type=str, metavar='PATH',
help='For Saving the current Model')
parser.add_argument('--resume', default='', type=str, metavar='PATH',
help='path to latest checkpoint (default: none)')
args = parser.parse_args()
torch.set_default_tensor_type('torch.FloatTensor')
device = torch.device("cpu" if args.no_cuda else "cuda")
train_data = dataset(args.data, "train", args.image_size, transform=transforms.Compose([ToTensor()]),shuffle=True)
valid_data = dataset(args.data, "val", args.image_size, transform=transforms.Compose([ToTensor()]))
trainloader = DataLoader(train_data, batch_size=args.batch_size, shuffle=True, num_workers=8)
validloader = DataLoader(valid_data, batch_size=args.batch_size_val, shuffle=False, num_workers=8)
model = Model(args.image_size,args.image_size)
optimizer = RAdam(model.parameters(),lr=args.lr,weight_decay = 1e-8)
if not args.no_cuda:
model.cuda()
if torch.cuda.device_count() > 1 and args.multi_gpu:
print("Let's use", torch.cuda.device_count(), "GPUs!")
model = torch.nn.DataParallel(model)
if args.resume:
model.load_state_dict(torch.load(os.path.join(args.resume,model_save_name )))
optimizer.load_state_dict(torch.load(os.path.join(args.resume,optimizer_save_name )))
train(model,optimizer,trainloader,validloader,device,args)
if __name__ == '__main__':
main()