forked from AzureCosmosDB/CosmosAIGraph
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPOT.json
1603 lines (1603 loc) · 71.1 KB
/
POT.json
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
{
"classifiers": [
"development status :: 5 - production/stable",
"environment :: console",
"intended audience :: developers",
"intended audience :: education",
"intended audience :: science/research",
"license :: osi approved :: mit license",
"operating system :: macos",
"operating system :: microsoft :: windows",
"operating system :: os independent",
"operating system :: posix",
"operating system :: posix :: linux",
"programming language :: c",
"programming language :: c++",
"programming language :: cython",
"programming language :: python",
"programming language :: python :: 3",
"programming language :: python :: 3.10",
"programming language :: python :: 3.6",
"programming language :: python :: 3.7",
"programming language :: python :: 3.8",
"programming language :: python :: 3.9",
"topic :: scientific/engineering :: artificial intelligence",
"topic :: scientific/engineering :: information analysis",
"topic :: scientific/engineering :: mathematics",
"topic :: utilities"
],
"description": "python optimal transport library\n# pot: python optimal transport\n\n[![pypi version](https://badge.fury.io/py/pot.svg)](https://badge.fury.io/py/pot)\n[![anaconda cloud](https://anaconda.org/conda-forge/pot/badges/version.svg)](https://anaconda.org/conda-forge/pot)\n[![build status](https://github.com/pythonot/pot/actions/workflows/build_tests.yml/badge.svg)](https://github.com/pythonot/pot/actions)\n[![codecov status](https://codecov.io/gh/pythonot/pot/branch/master/graph/badge.svg)](https://codecov.io/gh/pythonot/pot)\n[![downloads](https://static.pepy.tech/badge/pot)](https://pepy.tech/project/pot)\n[![anaconda downloads](https://anaconda.org/conda-forge/pot/badges/downloads.svg)](https://anaconda.org/conda-forge/pot)\n[![license](https://anaconda.org/conda-forge/pot/badges/license.svg)](https://github.com/pythonot/pot/blob/master/license)\n\nthis open source python library provide several solvers for optimization\nproblems related to optimal transport for signal, image processing and machine\nlearning.\n\nwebsite and documentation: [https://pythonot.github.io/](https://pythonot.github.io/)\n\nsource code (mit): [https://github.com/pythonot/pot](https://github.com/pythonot/pot)\n\npot provides the following generic ot solvers (links to examples):\n\n* [ot network simplex solver](https://pythonot.github.io/auto_examples/plot_ot_1d.html) for the linear program/ earth movers distance [1] .\n* [conditional gradient](https://pythonot.github.io/auto_examples/plot_optim_otreg.html) [6] and [generalized conditional gradient](https://pythonot.github.io/auto_examples/plot_optim_otreg.html) for regularized ot [7].\n* entropic regularization ot solver with [sinkhorn knopp\n algorithm](https://pythonot.github.io/auto_examples/plot_ot_1d.html) [2] ,\n stabilized version [9] [10] [34], lazy cpu/gpu solver from geomloss [60] [61], greedy sinkhorn [22] and [screening\n sinkhorn [26]\n ](https://pythonot.github.io/auto_examples/plot_screenkhorn_1d.html).\n* bregman projections for [wasserstein barycenter](https://pythonot.github.io/auto_examples/barycenters/plot_barycenter_lp_vs_entropic.html) [3], [convolutional barycenter](https://pythonot.github.io/auto_examples/barycenters/plot_convolutional_barycenter.html) [21] and unmixing [4].\n* sinkhorn divergence [23] and entropic regularization ot from empirical data.\n* debiased sinkhorn barycenters [sinkhorn divergence barycenter](https://pythonot.github.io/auto_examples/barycenters/plot_debiased_barycenter.html) [37]\n* [smooth optimal transport solvers](https://pythonot.github.io/auto_examples/plot_ot_1d_smooth.html) (dual and semi-dual) for kl and squared l2 regularizations [17].\n* weak ot solver between empirical distributions [39]\n* non regularized [wasserstein barycenters [16] ](https://pythonot.github.io/auto_examples/barycenters/plot_barycenter_lp_vs_entropic.html) with lp solver (only small scale).\n* [gromov-wasserstein distances](https://pythonot.github.io/auto_examples/gromov/plot_gromov.html) and [gw barycenters](https://pythonot.github.io/auto_examples/gromov/plot_gromov_barycenter.html) (exact [13] and regularized [12,51]), differentiable using gradients from graph dictionary learning [38]\n * [fused-gromov-wasserstein distances solver](https://pythonot.github.io/auto_examples/gromov/plot_fgw.html#sphx-glr-auto-examples-plot-fgw-py) and [fgw barycenters](https://pythonot.github.io/auto_examples/gromov/plot_barycenter_fgw.html) (exact [24] and regularized [12,51]).\n* [stochastic\n solver](https://pythonot.github.io/auto_examples/others/plot_stochastic.html) and\n [differentiable losses](https://pythonot.github.io/auto_examples/backends/plot_stoch_continuous_ot_pytorch.html) for\n large-scale optimal transport (semi-dual problem [18] and dual problem [19])\n* [sampled solver of gromov wasserstein](https://pythonot.github.io/auto_examples/gromov/plot_gromov.html) for large-scale problem with any loss functions [33]\n* non regularized [free support wasserstein barycenters](https://pythonot.github.io/auto_examples/barycenters/plot_free_support_barycenter.html) [20].\n* [one dimensional unbalanced ot](https://pythonot.github.io/auto_examples/unbalanced-partial/plot_uot_1d.html) with kl relaxation and [barycenter](https://pythonot.github.io/auto_examples/unbalanced-partial/plot_uot_barycenter_1d.html) [10, 25]. also [exact unbalanced ot](https://pythonot.github.io/auto_examples/unbalanced-partial/plot_unbalanced_ot.html) with kl and quadratic regularization and the [regularization path of uot](https://pythonot.github.io/auto_examples/unbalanced-partial/plot_regpath.html) [41]\n* [partial wasserstein and gromov-wasserstein](https://pythonot.github.io/auto_examples/unbalanced-partial/plot_partial_wass_and_gromov.html) (exact [29] and entropic [3]\n formulations).\n* [sliced wasserstein](https://pythonot.github.io/auto_examples/sliced-wasserstein/plot_variance.html) [31, 32] and max-sliced wasserstein [35] that can be used for gradient flows [36].\n* [wasserstein distance on the circle](https://pythonot.github.io/auto_examples/plot_compute_wasserstein_circle.html) [44, 45]\n* [spherical sliced wasserstein](https://pythonot.github.io/auto_examples/sliced-wasserstein/plot_variance_ssw.html) [46]\n* [graph dictionary learning solvers](https://pythonot.github.io/auto_examples/gromov/plot_gromov_wasserstein_dictionary_learning.html) [38].\n* [semi-relaxed (fused) gromov-wasserstein divergences](https://pythonot.github.io/auto_examples/gromov/plot_semirelaxed_fgw.html) (exact and regularized [48]).\n* [efficient discrete multi marginal optimal transport regularization](https://pythonot.github.io/auto_examples/others/plot_demd_gradient_minimize.html) [50].\n* [several backends](https://pythonot.github.io/quickstart.html#solving-ot-with-multiple-backends) for easy use of pot with [pytorch](https://pytorch.org/)/[jax](https://github.com/google/jax)/[numpy](https://numpy.org/)/[cupy](https://cupy.dev/)/[tensorflow](https://www.tensorflow.org/) arrays.\n* smooth strongly convex nearest brenier potentials [58], with an extension to bounding potentials using [59].\n\npot provides the following machine learning related solvers:\n\n* [optimal transport for domain\n adaptation](https://pythonot.github.io/auto_examples/domain-adaptation/plot_otda_classes.html)\n with [group lasso regularization](https://pythonot.github.io/auto_examples/domain-adaptation/plot_otda_classes.html), [laplacian regularization](https://pythonot.github.io/auto_examples/domain-adaptation/plot_otda_laplacian.html) [5] [30] and [semi\n supervised setting](https://pythonot.github.io/auto_examples/domain-adaptation/plot_otda_semi_supervised.html).\n* [linear ot mapping](https://pythonot.github.io/auto_examples/domain-adaptation/plot_otda_linear_mapping.html) [14] and [joint ot mapping estimation](https://pythonot.github.io/auto_examples/domain-adaptation/plot_otda_mapping.html) [8].\n* [wasserstein discriminant analysis](https://pythonot.github.io/auto_examples/others/plot_wda.html) [11] (requires autograd + pymanopt).\n* [jcpot algorithm for multi-source domain adaptation with target shift](https://pythonot.github.io/auto_examples/domain-adaptation/plot_otda_jcpot.html) [27].\n* [graph neural network ot layers tfgw](https://pythonot.github.io/auto_examples/gromov/plot_gnn_tfgw.html) [52] and tw (ot-gnn) [53] \n\nsome other examples are available in the [documentation](https://pythonot.github.io/auto_examples/index.html).\n\n#### using and citing the toolbox\n\nif you use this toolbox in your research and find it useful, please cite pot\nusing the following reference from our [jmlr paper](https://jmlr.org/papers/v22/20-451.html):\n\n r\u00e9mi flamary, nicolas courty, alexandre gramfort, mokhtar z. alaya, aur\u00e9lie boisbunon, stanislas chambon, laetitia chapel, adrien corenflos, kilian fatras, nemo fournier, l\u00e9o gautheron, nathalie t.h. gayraud, hicham janati, alain rakotomamonjy, ievgen redko, antoine rolet, antony schutz, vivien seguy, danica j. sutherland, romain tavenard, alexander tong, titouan vayer,\n pot python optimal transport library,\n journal of machine learning research, 22(78):1\u22128, 2021.\n website: https://pythonot.github.io/\n\nin bibtex format:\n\n```bibtex\n@article{flamary2021pot,\n author = {r{\\'e}mi flamary and nicolas courty and alexandre gramfort and mokhtar z. alaya and aur{\\'e}lie boisbunon and stanislas chambon and laetitia chapel and adrien corenflos and kilian fatras and nemo fournier and l{\\'e}o gautheron and nathalie t.h. gayraud and hicham janati and alain rakotomamonjy and ievgen redko and antoine rolet and antony schutz and vivien seguy and danica j. sutherland and romain tavenard and alexander tong and titouan vayer},\n title = {pot: python optimal transport},\n journal = {journal of machine learning research},\n year = {2021},\n volume = {22},\n number = {78},\n pages = {1-8},\n url = {http://jmlr.org/papers/v22/20-451.html}\n}\n```\n\n## installation\n\nthe library has been tested on linux, macosx and windows. it requires a c++ compiler for building/installing the emd solver and relies on the following python modules:\n\n- numpy (>=1.16)\n- scipy (>=1.0)\n- cython (>=0.23) (build only, not necessary when installing from pip or conda)\n\n#### pip installation\n\n\nyou can install the toolbox through pypi with:\n\n```console\npip install pot\n```\n\nor get the very latest version by running:\n\n```console\npip install -u https://github.com/pythonot/pot/archive/master.zip # with --user for user install (no root)\n```\n\n#### anaconda installation with conda-forge\n\nif you use the anaconda python distribution, pot is available in [conda-forge](https://conda-forge.org). to install it and the required dependencies:\n\n```console\nconda install -c conda-forge pot\n```\n\n#### post installation check\nafter a correct installation, you should be able to import the module without errors:\n\n```python\nimport ot\n```\n\nnote that for easier access the module is named `ot` instead of `pot`.\n\n\n### dependencies\n\nsome sub-modules require additional dependencies which are discussed below\n\n* **ot.dr** (wasserstein dimensionality reduction) depends on autograd and pymanopt that can be installed with:\n\n```shell\npip install pymanopt autograd\n```\n\n\n## examples\n\n### short examples\n\n* import the toolbox\n\n```python\nimport ot\n```\n\n* compute wasserstein distances\n\n```python\n# a,b are 1d histograms (sum to 1 and positive)\n# m is the ground cost matrix\nwd = ot.emd2(a, b, m) # exact linear program\nwd_reg = ot.sinkhorn2(a, b, m, reg) # entropic regularized ot\n# if b is a matrix compute all distances to a and return a vector\n```\n\n* compute ot matrix\n\n```python\n# a,b are 1d histograms (sum to 1 and positive)\n# m is the ground cost matrix\nt = ot.emd(a, b, m) # exact linear program\nt_reg = ot.sinkhorn(a, b, m, reg) # entropic regularized ot\n```\n\n* compute wasserstein barycenter\n\n```python\n# a is a n*d matrix containing d 1d histograms\n# m is the ground cost matrix\nba = ot.barycenter(a, m, reg) # reg is regularization parameter\n```\n\n### examples and notebooks\n\nthe examples folder contain several examples and use case for the library. the full documentation with examples and output is available on [https://pythonot.github.io/](https://pythonot.github.io/).\n\n\n## acknowledgements\n\nthis toolbox has been created by\n\n* [r\u00e9mi flamary](https://remi.flamary.com/)\n* [nicolas courty](http://people.irisa.fr/nicolas.courty/)\n\nit is currently maintained by \n\n* [r\u00e9mi flamary](https://remi.flamary.com/)\n* [c\u00e9dric vincent-cuaz](https://cedricvincentcuaz.github.io/)\n\nthe numerous contributors to this library are listed [here](contributors.md).\n\npot has benefited from the financing or manpower from the following partners:\n\n<img src=\"https://pythonot.github.io/master/_static/images/logo_anr.jpg\" alt=\"anr\" style=\"height:60px;\"/><img src=\"https://pythonot.github.io/master/_static/images/logo_cnrs.jpg\" alt=\"cnrs\" style=\"height:60px;\"/><img src=\"https://pythonot.github.io/master/_static/images/logo_3ia.jpg\" alt=\"3ia\" style=\"height:60px;\"/><img src=\"https://pythonot.github.io/master/_static/images/logo_hiparis.png\" alt=\"hi!paris\" style=\"height:60px;\"/>\n\n\n\n## contributions and code of conduct\n\nevery contribution is welcome and should respect the [contribution guidelines](https://pythonot.github.io/master/contributing.html). each member of the project is expected to follow the [code of conduct](https://pythonot.github.io/master/code_of_conduct.html).\n\n## support\n\nyou can ask questions and join the development discussion:\n\n* on the pot [slack channel](https://pot-toolbox.slack.com)\n* on the pot [gitter channel](https://gitter.im/pythonot/community)\n* on the pot [mailing list](https://mail.python.org/mm3/mailman3/lists/pot.python.org/)\n\nyou can also post bug reports and feature requests in github issues. make sure to read our [guidelines](.github/contributing.md) first.\n\n## references\n\n[1] bonneel, n., van de panne, m., paris, s., & heidrich, w. (2011, december). [displacement interpolation using lagrangian mass transport](https://people.csail.mit.edu/sparis/publi/2011/sigasia/bonneel_11_displacement_interpolation.pdf). in acm transactions on graphics (tog) (vol. 30, no. 6, p. 158). acm.\n\n[2] cuturi, m. (2013). [sinkhorn distances: lightspeed computation of optimal transport](https://arxiv.org/pdf/1306.0895.pdf). in advances in neural information processing systems (pp. 2292-2300).\n\n[3] benamou, j. d., carlier, g., cuturi, m., nenna, l., & peyr\u00e9, g. (2015). [iterative bregman projections for regularized transportation problems](https://arxiv.org/pdf/1412.5154.pdf). siam journal on scientific computing, 37(2), a1111-a1138.\n\n[4] s. nakhostin, n. courty, r. flamary, d. tuia, t. corpetti, [supervised planetary unmixing with optimal transport](https://hal.archives-ouvertes.fr/hal-01377236/document), workshop on hyperspectral image and signal processing : evolution in remote sensing (whispers), 2016.\n\n[5] n. courty; r. flamary; d. tuia; a. rakotomamonjy, [optimal transport for domain adaptation](https://arxiv.org/pdf/1507.00504.pdf), in ieee transactions on pattern analysis and machine intelligence , vol.pp, no.99, pp.1-1\n\n[6] ferradans, s., papadakis, n., peyr\u00e9, g., & aujol, j. f. (2014). [regularized discrete optimal transport](https://arxiv.org/pdf/1307.5551.pdf). siam journal on imaging sciences, 7(3), 1853-1882.\n\n[7] rakotomamonjy, a., flamary, r., & courty, n. (2015). [generalized conditional gradient: analysis of convergence and applications](https://arxiv.org/pdf/1510.06567.pdf). arxiv preprint arxiv:1510.06567.\n\n[8] m. perrot, n. courty, r. flamary, a. habrard (2016), [mapping estimation for discrete optimal transport](http://remi.flamary.com/biblio/perrot2016mapping.pdf), neural information processing systems (nips).\n\n[9] schmitzer, b. (2016). [stabilized sparse scaling algorithms for entropy regularized transport problems](https://arxiv.org/pdf/1610.06519.pdf). arxiv preprint arxiv:1610.06519.\n\n[10] chizat, l., peyr\u00e9, g., schmitzer, b., & vialard, f. x. (2016). [scaling algorithms for unbalanced transport problems](https://arxiv.org/pdf/1607.05816.pdf). arxiv preprint arxiv:1607.05816.\n\n[11] flamary, r., cuturi, m., courty, n., & rakotomamonjy, a. (2016). [wasserstein discriminant analysis](https://arxiv.org/pdf/1608.08063.pdf). arxiv preprint arxiv:1608.08063.\n\n[12] gabriel peyr\u00e9, marco cuturi, and justin solomon (2016), [gromov-wasserstein averaging of kernel and distance matrices](http://proceedings.mlr.press/v48/peyre16.html) international conference on machine learning (icml).\n\n[13] m\u00e9moli, facundo (2011). [gromov\u2013wasserstein distances and the metric approach to object matching](https://media.adelaide.edu.au/acvt/publications/2011/2011-gromov%e2%80%93wasserstein%20distances%20and%20the%20metric%20approach%20to%20object%20matching.pdf). foundations of computational mathematics 11.4 : 417-487.\n\n[14] knott, m. and smith, c. s. (1984).[on the optimal mapping of distributions](https://link.springer.com/article/10.1007/bf00934745), journal of optimization theory and applications vol 43.\n\n[15] peyr\u00e9, g., & cuturi, m. (2018). [computational optimal transport](https://arxiv.org/pdf/1803.00567.pdf) .\n\n[16] agueh, m., & carlier, g. (2011). [barycenters in the wasserstein space](https://hal.archives-ouvertes.fr/hal-00637399/document). siam journal on mathematical analysis, 43(2), 904-924.\n\n[17] blondel, m., seguy, v., & rolet, a. (2018). [smooth and sparse optimal transport](https://arxiv.org/abs/1710.06276). proceedings of the twenty-first international conference on artificial intelligence and statistics (aistats).\n\n[18] genevay, a., cuturi, m., peyr\u00e9, g. & bach, f. (2016) [stochastic optimization for large-scale optimal transport](https://arxiv.org/abs/1605.08527). advances in neural information processing systems (2016).\n\n[19] seguy, v., bhushan damodaran, b., flamary, r., courty, n., rolet, a.& blondel, m. [large-scale optimal transport and mapping estimation](https://arxiv.org/pdf/1711.02283.pdf). international conference on learning representation (2018)\n\n[20] cuturi, m. and doucet, a. (2014) [fast computation of wasserstein barycenters](http://proceedings.mlr.press/v32/cuturi14.html). international conference in machine learning\n\n[21] solomon, j., de goes, f., peyr\u00e9, g., cuturi, m., butscher, a., nguyen, a. & guibas, l. (2015). [convolutional wasserstein distances: efficient optimal transportation on geometric domains](https://dl.acm.org/citation.cfm?id=2766963). acm transactions on graphics (tog), 34(4), 66.\n\n[22] j. altschuler, j.weed, p. rigollet, (2017) [near-linear time approximation algorithms for optimal transport via sinkhorn iteration](https://papers.nips.cc/paper/6792-near-linear-time-approximation-algorithms-for-optimal-transport-via-sinkhorn-iteration.pdf), advances in neural information processing systems (nips) 31\n\n[23] aude, g., peyr\u00e9, g., cuturi, m., [learning generative models with sinkhorn divergences](https://arxiv.org/abs/1706.00292), proceedings of the twenty-first international conference on artificial intelligence and statistics, (aistats) 21, 2018\n\n[24] vayer, t., chapel, l., flamary, r., tavenard, r. and courty, n. (2019). [optimal transport for structured data with application on graphs](http://proceedings.mlr.press/v97/titouan19a.html) proceedings of the 36th international conference on machine learning (icml).\n\n[25] frogner c., zhang c., mobahi h., araya-polo m., poggio t. (2015). [learning with a wasserstein loss](http://cbcl.mit.edu/wasserstein/) advances in neural information processing systems (nips).\n\n[26] alaya m. z., b\u00e9rar m., gasso g., rakotomamonjy a. (2019). [screening sinkhorn algorithm for regularized optimal transport](https://papers.nips.cc/paper/9386-screening-sinkhorn-algorithm-for-regularized-optimal-transport), advances in neural information processing systems 33 (neurips).\n\n[27] redko i., courty n., flamary r., tuia d. (2019). [optimal transport for multi-source domain adaptation under target shift](http://proceedings.mlr.press/v89/redko19a.html), proceedings of the twenty-second international conference on artificial intelligence and statistics (aistats) 22, 2019.\n\n[28] caffarelli, l. a., mccann, r. j. (2010). [free boundaries in optimal transport and monge-ampere obstacle problems](http://www.math.toronto.edu/~mccann/papers/annals2010.pdf), annals of mathematics, 673-730.\n\n[29] chapel, l., alaya, m., gasso, g. (2020). [partial optimal transport with applications on positive-unlabeled learning](https://arxiv.org/abs/2002.08276), advances in neural information processing systems (neurips), 2020.\n\n[30] flamary r., courty n., tuia d., rakotomamonjy a. (2014). [optimal transport with laplacian regularization: applications to domain adaptation and shape matching](https://remi.flamary.com/biblio/flamary2014optlaplace.pdf), nips workshop on optimal transport and machine learning otml, 2014.\n\n[31] bonneel, nicolas, et al. [sliced and radon wasserstein barycenters of measures](https://perso.liris.cnrs.fr/nicolas.bonneel/wassersteinsliced-jmiv.pdf), journal of mathematical imaging and vision 51.1 (2015): 22-45\n\n[32] huang, m., ma s., lai, l. (2021). [a riemannian block coordinate descent method for computing the projection robust wasserstein distance](http://proceedings.mlr.press/v139/huang21e.html), proceedings of the 38th international conference on machine learning (icml).\n\n[33] kerdoncuff t., emonet r., marc s. [sampled gromov wasserstein](https://hal.archives-ouvertes.fr/hal-03232509/document), machine learning journal (mjl), 2021\n\n[34] feydy, j., s\u00e9journ\u00e9, t., vialard, f. x., amari, s. i., trouv\u00e9, a., & peyr\u00e9, g. (2019, april). [interpolating between optimal transport and mmd using sinkhorn divergences](http://proceedings.mlr.press/v89/feydy19a/feydy19a.pdf). in the 22nd international conference on artificial intelligence and statistics (pp. 2681-2690). pmlr.\n\n[35] deshpande, i., hu, y. t., sun, r., pyrros, a., siddiqui, n., koyejo, s., ... & schwing, a. g. (2019). [max-sliced wasserstein distance and its use for gans](https://openaccess.thecvf.com/content_cvpr_2019/papers/deshpande_max-sliced_wasserstein_distance_and_its_use_for_gans_cvpr_2019_paper.pdf). in proceedings of the ieee/cvf conference on computer vision and pattern recognition (pp. 10648-10656).\n\n[36] liutkus, a., simsekli, u., majewski, s., durmus, a., & st\u00f6ter, f. r.\n(2019, may). [sliced-wasserstein flows: nonparametric generative modeling\nvia optimal transport and diffusions](http://proceedings.mlr.press/v97/liutkus19a/liutkus19a.pdf). in international conference on\nmachine learning (pp. 4104-4113). pmlr.\n\n[37] janati, h., cuturi, m., gramfort, a. [debiased sinkhorn barycenters](http://proceedings.mlr.press/v119/janati20a/janati20a.pdf) proceedings of the 37th international\nconference on machine learning, pmlr 119:4692-4701, 2020\n\n[38] c. vincent-cuaz, t. vayer, r. flamary, m. corneli, n. courty, [online graph\ndictionary learning](https://arxiv.org/pdf/2102.06555.pdf), international conference on machine learning (icml), 2021.\n\n[39] gozlan, n., roberto, c., samson, p. m., & tetali, p. (2017). [kantorovich duality for general transport costs and applications](https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.712.1825&rep=rep1&type=pdf). journal of functional analysis, 273(11), 3327-3405.\n\n[40] forrow, a., h\u00fctter, j. c., nitzan, m., rigollet, p., schiebinger, g., & weed, j. (2019, april). [statistical optimal transport via factored couplings](http://proceedings.mlr.press/v89/forrow19a/forrow19a.pdf). in the 22nd international conference on artificial intelligence and statistics (pp. 2454-2465). pmlr.\n\n[41] chapel*, l., flamary*, r., wu, h., f\u00e9votte, c., gasso, g. (2021). [unbalanced optimal transport through non-negative penalized linear regression](https://proceedings.neurips.cc/paper/2021/file/c3c617a9b80b3ae1ebd868b0017cc349-paper.pdf) advances in neural information processing systems (neurips), 2020. (two first co-authors)\n\n[42] delon, j., gozlan, n., and saint-dizier, a. [generalized wasserstein barycenters between probability measures living on different subspaces](https://arxiv.org/pdf/2105.09755). arxiv preprint arxiv:2105.09755, 2021.\n\n[43] \u00e1lvarez-esteban, pedro c., et al. [a fixed-point approach to barycenters in wasserstein space.](https://arxiv.org/pdf/1511.05355.pdf) journal of mathematical analysis and applications 441.2 (2016): 744-762.\n\n[44] delon, julie, julien salomon, and andrei sobolevski. [fast transport optimization for monge costs on the circle.](https://arxiv.org/abs/0902.3527) siam journal on applied mathematics 70.7 (2010): 2239-2258.\n\n[45] hundrieser, shayan, marcel klatt, and axel munk. [the statistics of circular optimal transport.](https://arxiv.org/abs/2103.15426) directional statistics for innovative applications: a bicentennial tribute to florence nightingale. singapore: springer nature singapore, 2022. 57-82.\n\n[46] bonet, c., berg, p., courty, n., septier, f., drumetz, l., & pham, m. t. (2023). [spherical sliced-wasserstein](https://openreview.net/forum?id=jxq0ipgmdu). international conference on learning representations.\n\n[47] chowdhury, s., & m\u00e9moli, f. (2019). [the gromov\u2013wasserstein distance between networks and stable network invariants](https://academic.oup.com/imaiai/article/8/4/757/5627736). information and inference: a journal of the ima, 8(4), 757-787.\n\n[48] c\u00e9dric vincent-cuaz, r\u00e9mi flamary, marco corneli, titouan vayer, nicolas courty (2022). [semi-relaxed gromov-wasserstein divergence and applications on graphs](https://openreview.net/pdf?id=rshamexjc-x). international conference on learning representations (iclr), 2022.\n\n[49] redko, i., vayer, t., flamary, r., and courty, n. (2020). [co-optimal transport](https://proceedings.neurips.cc/paper/2020/file/cc384c68ad503482fb24e6d1e3b512ae-paper.pdf). advances in neural information processing systems, 33.\n\n[50] liu, t., puigcerver, j., & blondel, m. (2023). [sparsity-constrained optimal transport](https://openreview.net/forum?id=yhy9nbqj5bp). proceedings of the eleventh international conference on learning representations (iclr).\n\n[51] xu, h., luo, d., zha, h., & duke, l. c. (2019). [gromov-wasserstein learning for graph matching and node embedding](http://proceedings.mlr.press/v97/xu19b.html). in international conference on machine learning (icml), 2019.\n\n[52] collas, a., vayer, t., flamary, f., & breloy, a. (2023). [entropic wasserstein component analysis](https://arxiv.org/abs/2303.05119). arxiv.\n\n[53] c. vincent-cuaz, r. flamary, m. corneli, t. vayer, n. courty (2022). [template based graph neural network with optimal transport distances](https://papers.nips.cc/paper_files/paper/2022/file/4d3525bc60ba1adc72336c0392d3d902-paper-conference.pdf). advances in neural information processing systems, 35.\n\n[54] b\u00e9cigneul, g., ganea, o. e., chen, b., barzilay, r., & jaakkola, t. s. (2020). [optimal transport graph neural networks](https://arxiv.org/pdf/2006.04804).\n\n[55] ronak mehta, jeffery kline, vishnu suresh lokhande, glenn fung, & vikas singh (2023). [efficient discrete multi marginal optimal transport regularization](https://openreview.net/forum?id=r98zfmt-je). in the eleventh international conference on learning representations (iclr).\n\n[56] jeffery kline. [properties of the d-dimensional earth mover\u2019s problem](https://www.sciencedirect.com/science/article/pii/s0166218x19301441). discrete applied mathematics, 265: 128\u2013141, 2019.\n\n[57] delon, j., desolneux, a., & salmona, a. (2022). [gromov\u2013wasserstein\ndistances between gaussian distributions](https://hal.science/hal-03197398v2/file/main.pdf). journal of applied probability, 59(4),\n1178-1198.\n\n[58] paty f-p., d\u2019aspremont 1., & cuturi m. (2020). [regularity as regularization:smooth and strongly convex brenier potentials in optimal transport.](http://proceedings.mlr.press/v108/paty20a/paty20a.pdf) in international conference on artificial intelligence and statistics, pages 1222\u20131232. pmlr, 2020.\n\n[59] taylor a. b. (2017). [convex interpolation and performance estimation of first-order methods for convex optimization.](https://dial.uclouvain.be/pr/boreal/object/boreal%3a182881/datastream/pdf_01/view) phd thesis, catholic university of louvain, louvain-la-neuve, belgium, 2017.\n\n[60] feydy, j., roussillon, p., trouv\u00e9, a., & gori, p. (2019). [fast and scalable optimal transport for brain tractograms](https://arxiv.org/pdf/2107.02010.pdf). in medical image computing and computer assisted intervention\u2013miccai 2019: 22nd international conference, shenzhen, china, october 13\u201317, 2019, proceedings, part iii 22 (pp. 636-644). springer international publishing.\n\n[61] charlier, b., feydy, j., glaunes, j. a., collin, f. d., & durif, g. (2021). [kernel operations on the gpu, with autodiff, without memory overflows](https://www.jmlr.org/papers/volume22/20-275/20-275.pdf). the journal of machine learning research, 22(1), 3457-3462.\n\n[62] h. van assel, c. vincent-cuaz, t. vayer, r. flamary, n. courty (2023). [interpolating between clustering and dimensionality reduction with gromov-wasserstein](https://arxiv.org/pdf/2310.03398.pdf). neurips 2023 workshop optimal transport and machine learning.\n\n[63] li, j., tang, j., kong, l., liu, h., li, j., so, a. m. c., & blanchet, j. (2022). [a convergent single-loop algorithm for relaxation of gromov-wasserstein in graph data](https://openreview.net/pdf?id=0jxpyvwmiif). in the eleventh international conference on learning representations.\n\n[64] ma, x., chu, x., wang, y., lin, y., zhao, j., ma, l., & zhu, w. (2023). [fused gromov-wasserstein graph mixup for graph-level classifications](https://openreview.net/pdf?id=uqkugunu40). in thirty-seventh conference on neural information processing systems.\n\n[65] scetbon, m., cuturi, m., & peyr\u00e9, g. (2021). [low-rank sinkhorn factorization](https://arxiv.org/pdf/2103.04737.pdf).\n",
"docs_url": null,
"keywords": "",
"license": "mit",
"name": "pot",
"package_url": "https://pypi.org/project/POT/",
"project_url": "https://pypi.org/project/POT/",
"project_urls": {
"Download": "https://github.com/PythonOT/POT/archive/0.9.2.tar.gz",
"Homepage": "https://github.com/PythonOT/POT"
},
"release_url": "https://pypi.org/project/POT/0.9.2/",
"requires_dist": [
"numpy >=1.16",
"scipy >=1.6"
],
"requires_python": ">=3.6",
"summary": "python optimal transport library",
"version": "0.9.2",
"releases": [],
"developers": [
"remi_flamary"
],
"kwds": "badges pip badge workflows pythonot",
"license_kwds": "mit",
"libtype": "pypi",
"id": "pypi_pot",
"homepage": "https://github.com/pythonot/pot",
"release_count": 26,
"dependency_ids": [
"pypi_numpy",
"pypi_scipy"
],
"documentation_summary": "POT (Python Optimal Transport) is an open-source Python library designed for solving optimization problems related to Optimal Transport in signal processing, image processing, and machine learning. It offers a variety of solvers for different Optimal Transport problems, including Earth Movers Distance, entropic regularization OT solver, Wasserstein barycenter, and Gromov-Wasserstein distances, among others. The library supports integration with PyTorch, JAX, NumPy, CuPy, and TensorFlow, making it versatile for various applications. It is licensed under the MIT license and its documentation, along with source code, can be found on its GitHub page. The library also includes machine learning solvers for domain adaptation and discriminant analysis. Installation can be done via pip or conda, and it has been tested on Linux, MacOSX, and Windows.",
"embedding": [
0.003025870071724057,
-0.029365820810198784,
0.0025174247566610575,
-0.010544483549892902,
0.005871038418263197,
0.0161710437387228,
0.012627869844436646,
0.007880017161369324,
-0.024703005328774452,
-0.02264796383678913,
-0.006119060330092907,
0.03900325298309326,
-0.025666747242212296,
0.03738756477832794,
0.011848371475934982,
0.010098043829202652,
0.007646168116480112,
-0.0368773490190506,
0.009630344808101654,
0.010083870962262154,
-0.01343571301549673,
-0.006717856507748365,
-0.013697908259928226,
-0.027395816519856453,
0.00667179562151432,
0.0032650341745465994,
0.03546007722616196,
-0.030499635264277458,
0.013237295672297478,
-0.0087587246671319,
0.02597854658961296,
-0.007922535762190819,
-0.04438887536525726,
-0.02104645036160946,
-0.031690143048763275,
-0.029876038432121277,
0.028175314888358116,
0.0007715260144323111,
0.041951172053813934,
-0.011437363922595978,
0.023172354325652122,
0.015618308447301388,
-0.007681599818170071,
-0.008829588070511818,
0.003989613149315119,
0.0035095131024718285,
0.013258554972708225,
-0.014420715160667896,
-0.010183080099523067,
0.011210600845515728,
0.003929379396140575,
0.048952482640743256,
0.00768868625164032,
-0.01163578126579523,
0.026545453816652298,
-0.019260689616203308,
0.004237635526806116,
0.02050788700580597,
-0.015476580709218979,
-0.020706305280327797,
0.008616997860372066,
-0.000494272680953145,
-0.04968946427106857,
0.0036742708180099726,
-0.021287385374307632,
-0.00252982578240335,
0.00314810941927135,
0.024121923372149467,
0.022704655304551125,
0.009353977628052235,
0.03713245689868927,
0.04983118921518326,
-0.009353977628052235,
-0.013967189006507397,
0.02823200449347496,
-0.023597534745931625,
-0.01673795096576214,
0.02454710565507412,
-0.0112460320815444,
0.004400621168315411,
0.012160170823335648,
-0.013726253993809223,
0.0166387427598238,
0.03100985288619995,
0.017928456887602806,
0.009396495297551155,
-0.0002881042892113328,
0.029450856149196625,
-0.014463233761489391,
0.0030152404215186834,
-0.003360699862241745,
0.001569625805132091,
-0.01038149744272232,
0.015263990499079227,
-0.0175457950681448,
0.02661631815135479,
0.0064521185122430325,
0.03724583983421326,
-0.019289035350084305,
-0.0053501916117966175,
0.0062926760874688625,
0.020621268078684807,
-0.027650924399495125,
-0.01770169474184513,
-0.0368490032851696,
-0.037727709859609604,
0.00418094452470541,
0.00018358067609369755,
0.009899626486003399,
0.023696742951869965,
-0.012507402338087559,
0.03409950062632561,
-0.0031303935684263706,
-0.0013703223085030913,
-0.00550609128549695,
0.006866669747978449,
0.01734737679362297,
-0.020791340619325638,
-0.016256079077720642,
-0.00817764364182949,
0.011387758888304234,
0.00836897548288107,
0.0026184050366282463,
0.0023314079735428095,
0.03163345158100128,
-0.002439474919810891,
-0.0030489007476717234,
-0.000586395210120827,
-0.02660214528441429,
-0.031973596662282944,
-0.02365422435104847,
-0.001520907157100737,
-0.0184386745095253,
-0.014668737538158894,
-0.013612871989607811,
-0.008156385272741318,
-0.025156531482934952,
-0.027537543326616287,
-0.019855942577123642,
-0.012578265741467476,
-8.21019712020643e-05,
0.001129386480897665,
-0.022676309570670128,
-0.009927971288561821,
-0.02922409400343895,
0.04461563751101494,
0.0022091686259955168,
0.0024040432181209326,
0.015349026769399643,
0.002157792681828141,
0.035743534564971924,
0.020011842250823975,
-0.021910984069108963,
0.023073144257068634,
-0.01253574714064598,
-0.01943076215684414,
0.013067223131656647,
-0.008482356555759907,
-0.013350676745176315,
-0.021145658567547798,
-0.02500063180923462,
0.01727651245892048,
-0.01904810033738613,
-0.018112702295184135,
0.00046769887558184564,
0.032512158155441284,
0.016241906210780144,
-0.008276852779090405,
-0.010778333060443401,
0.027948550879955292,
-0.009056351147592068,
-0.013506576418876648,
-0.02947920188307762,
-0.005899383686482906,
0.019303208217024803,
-0.013364849612116814,
0.003452822333201766,
0.01825442910194397,
-0.009906712919473648,
0.00595961743965745,
0.006763917859643698,
0.016426151618361473,
0.0028309954795986414,
0.04413376748561859,
0.011090132407844067,
-0.019189827144145966,
0.010983837768435478,
-0.009028005413711071,
0.020451197400689125,
0.00617929408326745,
0.00617929408326745,
0.009850021451711655,
-0.0032862932421267033,
-0.011097218841314316,
-0.5982010364532471,
-0.02266213670372963,
-0.03710411116480827,
-0.02695646323263645,
0.014151434414088726,
0.011075959540903568,
0.012904237024486065,
0.017148958519101143,
-0.023427462205290794,
0.023951852694153786,
-0.014753773808479309,
0.022988108918070793,
-0.03191690519452095,
-0.01101926900446415,
0.005109256133437157,
-0.022265302017331123,
-0.010473620146512985,
-0.028628841042518616,
0.010650779120624065,
0.00469470489770174,
-0.029025675728917122,
0.020210260525345802,
-0.027367470785975456,
0.03432626277208328,
0.031605105847120285,
0.026318691670894623,
0.019940979778766632,
-0.015008882619440556,
0.0058745816349983215,
-0.004216376226395369,
-0.0058001745492219925,
0.021528320387005806,
-0.001265798695385456,
-0.01600097119808197,
0.043566860258579254,
0.017106441780924797,
-0.006207639817148447,
0.0512484610080719,
0.0166245698928833,
0.053459398448467255,
-0.011090132407844067,
-0.012521574273705482,
0.010587002150714397,
-0.010771246626973152,
-0.007249332498759031,
-0.00045020447578281164,
0.022775517776608467,
0.0010115760378539562,
-0.013208949938416481,
-0.021981846541166306,
-0.0006032252567820251,
0.011883803643286228,
-0.017914284020662308,
-0.010239770635962486,
0.0037274183705449104,
-0.007369800470769405,
0.02049371413886547,
-0.022095229476690292,
0.01163578126579523,
-0.02500063180923462,
-0.009056351147592068,
0.011933407746255398,
0.007568218279629946,
-0.014172693714499474,
0.008694947697222233,
-0.008475271053612232,
-0.013825462199747562,
-0.00994214415550232,
0.0034244770649820566,
-0.0238384697586298,
0.012379847466945648,
-0.0009061665623448789,
-0.0036849002353847027,
-0.004687618464231491,
0.02491559460759163,
0.03730252757668495,
0.02875639498233795,
-0.01653953269124031,
0.0019292578799650073,
0.008078435435891151,
0.0011958209797739983,
0.017602484673261642,
-0.0026308062952011824,
-0.028983157128095627,
0.05873164162039757,
0.016326943412423134,
-0.016482843086123466,
0.011281464248895645,
0.02103227749466896,
-0.021244866773486137,
0.01214599795639515,
0.03004610911011696,
0.019855942577123642,
-0.039343398064374924,
-0.001004489604383707,
0.008347716182470322,
-0.013719167560338974,
0.006848954129964113,
-0.0046521867625415325,
-0.017489103600382805,
-0.024589622393250465,
-0.0323987752199173,
0.00876581110060215,
-0.009998835623264313,
0.024136096239089966,
0.009970489889383316,
-0.00858156569302082,
0.009148473851382732,
0.015674998983740807,
0.0010983836837112904,
-0.008035916835069656,
-0.03563015162944794,
-6.394320371327922e-05,
-0.02057875134050846,
0.04906586557626724,
-0.029904382303357124,
0.01574586145579815,
-0.0009203392546623945,
-0.005977333523333073,
-0.022690482437610626,
0.0061403196305036545,
0.0032986945006996393,
-0.00462738424539566,
0.012684560380876064,
0.005275784991681576,
0.0037770227063447237,
0.01011221669614315,
-0.025425812229514122,
-0.04098742827773094,
-0.015802552923560143,
-0.007894190028309822,
0.0028699703980237246,
-0.00604819692671299,
-0.009141387417912483,
0.0431700237095356,
-0.0003082560724578798,
0.032767266035079956,
0.007029655855149031,
-0.00606945576146245,
-0.006746202241629362,
-0.02606358379125595,
-0.00694816280156374,
0.025383293628692627,
-0.012663301080465317,
0.015434063039720058,
-0.024703005328774452,
0.0016201160615310073,
-0.014512837864458561,
-0.001346405828371644,
-0.011749163269996643,
-0.012932582758367062,
-0.0206779595464468,
-0.028387904167175293,
-0.014612047001719475,
0.0029443770181387663,
-0.028373731300234795,
-0.01807018369436264,
-0.010098043829202652,
-0.013003446161746979,
-0.03962685167789459,
-0.0032933796755969524,
-0.0002424859267193824,
-0.011777508072555065,
0.0005775372264906764,
-0.00817764364182949,
-0.034467991441488266,
-0.024943940341472626,
0.027707615867257118,
-0.025425812229514122,
-0.017857594415545464,
-0.004616755060851574,
-0.013201863504946232,
0.005187205970287323,
0.012968013994395733,
-0.018226083368062973,
0.020210260525345802,
-0.0003549816901795566,
0.005569868721067905,
0.010629519820213318,
-0.0022144834510982037,
-0.009396495297551155,
0.0004566264688037336,
-0.03350424766540527,
-0.026772217825055122,
0.013527835719287395,
0.020196087658405304,
0.0016644056886434555,
0.019118962809443474,
-0.0242919959127903,
0.007114692125469446,
0.005063194781541824,
0.019090617075562477,
0.001384494942612946,
0.030811434611678123,
0.0024430181365460157,
0.008227248676121235,
0.013279813341796398,
0.008524875156581402,
0.006600931752473116,
0.052722420543432236,
0.014668737538158894,
0.014038052409887314,
0.003541401820257306,
-0.026049410924315453,
0.00948861800134182,
-0.005321846343576908,
-0.006023394875228405,
-0.03038625419139862,
0.012507402338087559,
0.008857933804392815,
0.02698480896651745,
0.0032561763655394316,
-0.03985361382365227,
-0.019459107890725136,
0.0046061254106462,
0.037897780537605286,
-0.010948405601084232,
0.0175316222012043,
0.006600931752473116,
0.0026254914700984955,
0.007270591799169779,
0.0035927777644246817,
0.029507547616958618,
0.0035112847108393908,
-0.01877881959080696,
-0.024575449526309967,
0.032427120953798294,
0.004219919443130493,
0.019019754603505135,
-0.016511186957359314,
-0.016057660803198814,
0.01344988588243723,
-0.0030825608409941196,
-0.008425666019320488,
0.018311120569705963,
-0.04260311648249626,
0.03137834370136261,
0.0033589282538741827,
0.041129156947135925,
-0.034467991441488266,
0.008709119632840157,
0.020734651014208794,
0.0233849436044693,
-0.013782944530248642,
-0.013279813341796398,
-0.007504441309720278,
0.013499489985406399,
0.00994214415550232,
-0.007922535762190819,
-0.014555356465280056,
0.0009345119469799101,
-0.0034032179974019527,
-0.022364510223269463,
-0.005250982940196991,
0.007844585925340652,
0.003922292962670326,
-0.014612047001719475,
0.013910498470067978,
0.046968307346105576,
0.02831704169511795,
0.0037734797224402428,
-0.006104887463152409,
0.0157316904515028,
0.015660826116800308,
0.014881327748298645,
-0.019033927470445633,
0.0067107705399394035,
-0.03316410258412361,
0.012514487840235233,
0.008503615856170654,
-0.011678298935294151,
-0.02507149428129196,
-0.01361995842307806,
-0.007518613710999489,
0.018041837960481644,
0.021967675536870956,
-0.003426248673349619,
0.025921856984496117,
0.0007724117604084313,
-0.012684560380876064,
-0.017304858192801476,
-0.01699305884540081,
0.038974907249212265,
0.0059702470898628235,
-0.013407368212938309,
0.0032384605146944523,
-0.007922535762190819,
0.009800417348742485,
-0.04280153289437294,
-0.008425666019320488,
0.01232315693050623,
0.021188177168369293,
0.0033624714706093073,
0.02284638211131096,
-0.016298597678542137,
-0.010395670309662819,
0.004428966902196407,
0.023810124024748802,
0.00728476420044899,
-0.0016785783227533102,
0.005963160656392574,
5.73551187699195e-05,
-0.006406057626008987,
-0.008999660611152649,
0.041951172053813934,
0.03350424766540527,
0.008149298839271069,
-0.015788380056619644,
-0.021244866773486137,
-0.02930912934243679,
0.00925476849079132,
0.009424841031432152,
-0.010912974365055561,
-0.015292336232960224,
-0.012805028818547726,
-0.004829345270991325,
0.019090617075562477,
0.017574138939380646,
0.033759355545043945,
0.0028168228454887867,
-0.020380333065986633,
-0.025850992649793625,
-0.021953502669930458,
0.013201863504946232,
0.02956423908472061,
0.023413289338350296,
0.031973596662282944,
0.008298112079501152,
-0.02867135964334011,
-0.0046840752474963665,
-0.010190166532993317,
-0.003133936785161495,
0.004457312170416117,
-0.017786730080842972,
-0.009772072546184063,
-0.001991263357922435,
0.0037770227063447237,
0.009729553945362568,
0.014392370358109474,
0.009141387417912483,
0.0085390480235219,
-0.012890065088868141,
0.0008671917021274567,
-0.018098529428243637,
0.009141387417912483,
-0.031236616894602776,
-0.023030627518892288,
-0.0009699437068775296,
0.0022304276935756207,
-0.012004271149635315,
0.023710915818810463,
0.03265388682484627,
0.01724816858768463,
6.720957026118413e-05,
-0.02076299488544464,
0.0011692472035065293,
0.013364849612116814,
-0.004857690539211035,
-0.02032364159822464,
0.018296947702765465,
0.03795447200536728,
0.02939416654407978,
0.0035608892794698477,
0.013910498470067978,
0.03373100981116295,
0.014222297817468643,
-0.012238120660185814,
-0.0008379605133086443,
0.008659515529870987,
-0.02004018798470497,
-0.0011541887652128935,
0.030811434611678123,
0.00071660679532215,
0.010941319167613983,
-0.004411250818520784,
-0.00014914544590283185,
-0.039059944450855255,
-0.013074309565126896,
0.016426151618361473,
0.007167839910835028,
0.027806824073195457,
-0.005204921588301659,
0.009679949842393398,
-0.025156531482934952,
-0.011061787605285645,
-0.03373100981116295,
0.006416686810553074,
-0.0052864146418869495,
0.014994709752500057,
-0.0010957263875752687,
-0.016567878425121307,
-0.013145172968506813,
-0.0049320971593260765,
0.01699305884540081,
0.0006612447323277593,
-0.02597854658961296,
-0.0229172445833683,
0.005902926903218031,
0.010955492034554482,
0.005346648395061493,
0.02760840579867363,
-0.01205387618392706,
0.0038089114241302013,
0.011437363922595978,
-0.0026910400483757257,
-0.004326214548200369,
-0.02346998080611229,
-0.032512158155441284,
0.016312770545482635,
0.012379847466945648,
0.0031516526360064745,
0.0063245645724236965,
0.006561956834048033,
0.025114012882113457,
0.014456147328019142,
-0.026021065190434456,
0.002014294033870101,
-0.004241178277879953,
-0.000302719883620739,
0.03517662361264229,
-0.009609086439013481,
0.008503615856170654,
0.009084696881473064,
-0.006094258278608322,
0.013421541079878807,
-0.02400854229927063,
0.0188922006636858,
-0.05105004087090492,
0.003594549372792244,
-0.009736640378832817,
-0.007986312732100487,
-0.0004422323254402727,
-0.0064840069971978664,
0.01537737250328064,
0.01996932551264763,
-0.027367470785975456,
-0.0003523243067320436,
0.0014739601174369454,
0.010587002150714397,
0.012755423784255981,
-0.004552977625280619,
0.020337814465165138,
0.0048860362730920315,
0.0085390480235219,
-0.027395816519856453,
-0.006182837300002575,
0.001835363800637424,
0.00904217828065157,
0.015476580709218979,
0.012649129144847393,
-0.011430277489125729,
-0.006767461076378822,
-0.016397805884480476,
-0.00462738424539566,
0.028033588081598282,
0.015434063039720058,
0.004035674501210451,
-0.008106780238449574,
-0.0025422268081456423,
-0.00040015715057961643,
-0.019388245418667793,
-0.00259537436068058,
-0.017191477119922638,
0.01473960094153881,
-0.01384672150015831,
0.012075134553015232,
-0.00926894135773182,
-0.03194525092840195,
-0.006657622754573822,
-0.022052710875868797,
-0.029450856149196625,
0.007348541636019945,
-0.0010939547792077065,
0.02725408971309662,
0.040959082543849945,
0.013690821826457977,
-0.014264815486967564,
-0.004053390119224787,
-0.017503276467323303,
-0.008517788723111153,
-0.00971538107842207,
-0.012018444016575813,
-0.017404068261384964,
0.0413559190928936,
0.032682232558727264,
0.02905402146279812,
0.033135756850242615,
0.012911323457956314,
-0.00418094452470541,
0.010863369330763817,
-0.0013446343364194036,
-0.011295636184513569,
-0.013265641406178474,
-0.028118623420596123,
0.020082706585526466,
0.01209639385342598,
0.013258554972708225,
0.0037593068554997444,
0.0008875649073161185,
0.03962685167789459,
-0.010501965880393982,
-0.0040321312844753265,
-0.013492404483258724,
-0.018863854929804802,
-0.014264815486967564,
-0.005034849513322115,
0.0015829126350581646,
0.023951852694153786,
-0.017772557213902473,
-0.010282289236783981,
0.01788593828678131,
-0.008702034130692482,
-0.0010301776928827167,
0.019912634044885635,
-0.005105712916702032,
-0.01492384634912014,
0.00225877296179533,
0.012351502664387226,
-0.0002318564074812457,
-0.027041498571634293,
0.0012409964110702276,
-0.03801116347312927,
-0.025652574375271797,
-0.013520749285817146,
-0.008560306392610073,
0.0033199533354490995,
-0.01299635972827673,
0.014449060894548893,
-0.012280639261007309,
0.01862291991710663,
0.007249332498759031,
-0.02767927013337612,
0.015207299962639809,
-0.0211173128336668,
-0.0060659125447273254,
0.004276610445231199,
-0.025936027988791466,
-0.025312431156635284,
-0.0022233412601053715,
-0.005364364478737116,
-0.0011967067839577794,
0.021740911528468132,
-0.01447032019495964,
-0.005435227882117033,
0.01988428831100464,
-0.01591593399643898,
0.027580061927437782,
0.019076446071267128,
0.04076066613197327,
0.018580401316285133,
-0.0061544920317828655,
0.0021170461550354958,
-0.002737101400271058,
-0.0006364425062201917,
0.024660486727952957,
0.021174004301428795,
-0.003452822333201766,
-0.020096879452466965,
-0.02860049530863762,
0.0021861379500478506,
-0.018410328775644302,
-0.03696238249540329,
-0.03497820720076561,
0.04467232897877693,
0.014938019216060638,
0.011628694832324982,
-0.017843421548604965,
0.014356938190758228,
-0.03409950062632561,
0.019487453624606133,
-0.012585352174937725,
-0.009772072546184063,
0.009431927464902401,
-0.0032225162722170353,
-0.01961500756442547,
0.0083193713799119,
0.024433722719550133,
0.012833373621106148,
0.013364849612116814,
-0.013967189006507397,
-0.007979226298630238,
-0.01835363730788231,
-0.0011160996509715915,
0.017857594415545464,
0.009566567838191986,
0.02841624990105629,
-0.026417899876832962,
0.006282046437263489,
0.061736252158880234,
0.023682570084929466,
-0.023895161226391792,
-0.034127846360206604,
-0.00010319492139387876,
0.032512158155441284,
-0.02318652719259262,
-0.021996019408106804,
0.006824152078479528,
-0.016227733343839645,
0.0188922006636858,
-0.012705819681286812,
-0.025199048221111298,
-0.014172693714499474,
-0.01434276532381773,
-0.006923360750079155,
0.014378197491168976,
-0.006629277486354113,
-0.024022715166211128,
-0.015221472829580307,
0.01593010686337948,
0.0015837984392419457,
-0.0386347621679306,
-0.00042230196413584054,
0.013577439822256565,
-0.021174004301428795,
-0.027750134468078613,
-0.01771586760878563,
-0.023583361878991127,
0.009424841031432152,
-0.0013995534973219037,
0.0011816483456641436,
0.023229043930768967,
0.04815881326794624,
-0.024235306307673454,
0.04039217531681061,
0.020281124860048294,
0.0220385380089283,
-0.03679231181740761,
0.018197737634181976,
-0.028912294656038284,
-0.015306509099900723,
0.028189487755298615,
-0.008241421543061733,
-0.014583701267838478,
-0.006377711892127991,
-0.013350676745176315,
0.03407115489244461,
0.012932582758367062,
-0.014314420521259308,
-0.003801824990659952,
0.016411978751420975,
0.027438335120677948,
-0.009970489889383316,
-0.0016103723319247365,
0.013187691569328308,
-0.0018973692785948515,
-0.0017175532411783934,
0.004995874594897032,
-0.013421541079878807,
0.01771586760878563,
0.006250157952308655,
0.011160995811223984,
0.009545308537781239,
-0.019586661830544472,
-0.029195748269557953,
-0.009559481404721737,
0.006476921029388905,
-0.025595884770154953,
0.004312042146921158,
0.012124739587306976,
-0.007242246530950069,
-0.01815522089600563,
0.020252779126167297,
0.01479629147797823,
-0.024051060900092125,
0.0019877201411873102,
0.031066544353961945,
-0.0070402855053544044,
-0.03588525950908661,
-0.024958113208413124,
-0.04039217531681061,
-0.014767946675419807,
0.020167741924524307,
-0.018467020243406296,
-0.015363199636340141,
0.0036742708180099726,
0.02905402146279812,
0.02543998509645462,
-0.04385031387209892,
-0.001900912495329976,
-0.005771829281002283,
-0.010360239073634148,
-0.023073144257068634,
-0.016043489798903465,
-0.006480464246124029,
-0.0022729455959051847,
0.023710915818810463,
0.016582051292061806,
-0.012932582758367062,
0.007702858652919531,
0.037444256246089935,
-0.004237635526806116,
0.003794738557189703,
0.00197709072381258,
0.002301291096955538,
-0.009361064061522484,
-0.006044653709977865,
-0.06264330446720123,
-0.006459204945713282,
0.008057176135480404,
0.026417899876832962,
0.023328253999352455,
0.056860845535993576,
0.013584526255726814,
-0.017148958519101143,
-0.004145512823015451,
0.007603649981319904,
0.004436052870005369,
-0.0009841163409873843,
0.016128525137901306,
-0.017333203926682472,
-0.003964811097830534,
0.011387758888304234,
-0.011841285042464733,
-0.0062040966004133224,
-0.011033441871404648,
0.02222278341650963,
-0.004046304151415825,
0.021783430129289627,
-0.00571159552782774,
-0.01862291991710663,
0.0211173128336668,
0.004613211844116449,
0.013371936045587063,
0.00858156569302082,
0.006423773244023323,
0.008652429096400738,
0.016326943412423134,
0.008574479259550571,
-0.021627530455589294,
0.0018814250361174345,
-0.033844392746686935,
-0.019133135676383972,
-0.0014642163878306746,
-0.002806193195283413,
-0.007830413058400154,
-0.008000485599040985,
0.03642382100224495,
-0.0008091722265817225,
0.008213075809180737,
0.021627530455589294,
-0.004184487741440535,