diff --git a/src/Cat/Displayed/Path.lagda.md b/src/Cat/Displayed/Path.lagda.md index 9c2a513bf..50cf8e981 100644 --- a/src/Cat/Displayed/Path.lagda.md +++ b/src/Cat/Displayed/Path.lagda.md @@ -26,7 +26,7 @@ corresponding bases, is a [[displayed functor]] ~~~{.quiver} \[\begin{tikzcd} - {\mathcal{E}} && {\mathcal{E}} \\ + {\mathcal{E}} && {\mathcal{F}} \\ \\ {\mathcal{B}_0} && {\mathcal{B}_1} \arrow["{\mathrm{path}(\mathcal{B})}"', from=3-1, to=3-3] @@ -213,11 +213,11 @@ like {\mathcal{E}[x]} && {\mathcal{F}[x]} \\ \\ {\mathcal{F}[Fx]} && {\mathcal{F}[x]} - \arrow[""{name=0, anchor=center, inner sep=0}, "{\mathcal{F}(\operatorname{unglue}(\partial i, x)}"', from=3-1, to=3-3] + \arrow[""{name=0, anchor=center, inner sep=0}, "{\mathcal{F}(\unglue(\partial i, x))}"', from=3-1, to=3-3] \arrow["{F_0'}"', from=1-1, to=3-1] \arrow["{\mathrm{id}}", from=1-3, to=3-3] \arrow[""{name=1, anchor=center, inner sep=0}, dashed, from=1-1, to=1-3] - \arrow["{\mathrm{Glue}\ ...}"{description}, draw=none, from=1, to=0] + \arrow["{\Glue\ ...}"{description}, draw=none, from=1, to=0] \end{tikzcd}\] ~~~ diff --git a/src/Cat/Functor/Equivalence/Path.lagda.md b/src/Cat/Functor/Equivalence/Path.lagda.md index 39c909c1f..9a88e215f 100644 --- a/src/Cat/Functor/Equivalence/Path.lagda.md +++ b/src/Cat/Functor/Equivalence/Path.lagda.md @@ -47,14 +47,14 @@ univalence it induces an equivalence $\cC_0 \equiv \cD_0$. The path between `Hom`{.Agda}-sets is slightly more complicated. It is, essentially, the dashed line in the diagram -~~~{.quiver} +~~~{.quiver .tall-1} \[\begin{tikzcd} - {\mathbf{Hom}_\mathcal{C}(x,y)} && {\mathbf{Hom}_\mathcal{D}(F_0x,F_0y)} \\ + {\mathbf{Hom}_\mathcal{C}(x,y)} && {\mathbf{Hom}_\mathcal{D}(x,y)} \\ \\ - {\mathbf{Hom}_\mathcal{D}(F_0x,F_0y)} && {\mathbf{Hom}_\mathcal{D}(F_0x,F_0y)} + {\mathbf{Hom}_\mathcal{D}(F_0x,F_0y)} && {\mathbf{Hom}_\mathcal{D}(x,y)} \arrow["{\mathrm{id}}", from=1-3, to=3-3] \arrow["{F_1}"', from=1-1, to=3-1] - \arrow["{\mathrm{Hom}_\mathcal{D}(x, y)}"', from=3-1, to=3-3] + \arrow["{\mathrm{Hom}_\mathcal{D}(\unglue x, \unglue y)}"', from=3-1, to=3-3, outer sep=0.5em] \arrow[dashed, from=1-1, to=1-3] \end{tikzcd}\] ~~~ @@ -71,11 +71,12 @@ essentially, the dashed line in the diagram hom i x y = Glue (D.Hom (unglue (i ∨ ~ i) x) (unglue (i ∨ ~ i) y)) (sys i x y) ``` -Note that $\rm{unglue}_{i \lor \neg i}(x)$ is a term in $\cD_0$ which -evaluates to $F_0(x)$ when $i = i1$ or $i = i0$, so that the system +Note that $\unglue_{i \lor \neg i}x$ is a term in $\cD_0$ which +evaluates to $F_0(x)$ when $i = i0$ (and thus $x$ has type $\cC_0$) and $x$ +when $i = i1$ (and thus $x$ has type $\cD_0$), so that the system described above can indeed be built. The introduction rule for `hom`{.Agda} is `hom-glue`{.Agda}: If we have a partial element $\neg i -\vdash f : \hom_\mathcal{C} x y$ together with an element $g$ of base +\vdash f : \hom_\cC(x, y)$ together with an element $g$ of base type satisfying definitionally $\neg i \vdash F_1(f) = g$, we may glue $f$ along $g$ to get an element of $\hom_i(x, y)$. diff --git a/src/preamble.tex b/src/preamble.tex index 95ef5264b..96518830e 100644 --- a/src/preamble.tex +++ b/src/preamble.tex @@ -109,3 +109,7 @@ \DeclareMathOperator{\Nf}{Nf} \DeclareMathOperator{\reify}{reify} \DeclareMathOperator{\reflect}{reflect} + +\DeclareMathOperator{\Glue}{Glue} +\DeclareMathOperator{\glue}{glue} +\DeclareMathOperator{\unglue}{unglue}