-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbenchmark.py
181 lines (149 loc) · 6.1 KB
/
benchmark.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
import torchvision
import torchvision.transforms as transforms
import argparse
import time
from models import resnet, lenet
best_accuracy = 0
avg_loss = 0
# Training
def train(net, trainloader, optimizer, criterion, device):
global best_accuracy
global avg_loss
net.train()
train_loss = 0
correct = 0
total = 0
data_time = 0
train_time = 0
total_time = 0
st = time.monotonic()
for inputs, targets in trainloader:
start=time.monotonic()
inputs, targets = inputs.to(device), targets.to(device)
end = time.monotonic()
data_time += end - start
start_t = time.monotonic()
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()
end_t = time.monotonic()
train_time +=(end_t - start_t)
train_loss += loss.item()
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
et = time.monotonic()
total_time +=(et - st)
accuracy = 100.*correct/total
loss = train_loss/len(trainloader)
avg_loss += loss
if accuracy > best_accuracy:
best_accuracy = accuracy
print('[INFO] Epoch Training Loss: %.3f' % loss)
print('[INFO] Epoch Training Accuracy: %.3f' % accuracy)
print('[INFO] Epoch Data Loading Time: %.3f s' % data_time)
print('[INFO] Epoch Training Time: %.3f s' % train_time)
return total_time, data_time, train_time
# Testing
def test(net, testloader, criterion, device):
net.eval()
test_loss = 0
correct = 0
total = 0
with torch.no_grad():
for inputs, targets in testloader:
inputs, targets = inputs.to(device), targets.to(device)
outputs = net(inputs)
loss = criterion(outputs, targets)
test_loss += loss.item()
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
def main(args):
print()
total_time = 0
data_time = 0
train_time = 0
device = args.device
epochs = args.epochs
# Device details
if device == 'cuda':
if torch.cuda.is_available():
device_name = torch.cuda.get_device_name(0)
num_devices = torch.cuda.device_count()
device = 'cuda'
print('[INFO] Using GPU...')
print(f'[INFO] Device Name: {device_name}')
print(f'[INFO] Number of devices: {num_devices}')
else:
device = 'cpu'
print('[INFO] Using CPU...')
# Data
print('\n==> Preparing data...')
if args.data == 'mnist':
trainset = torchvision.datasets.MNIST(root='.data', train=True, download=True, transform=transforms.ToTensor())
testset = torchvision.datasets.MNIST(root='.data', train=False, download=True, transform=transforms.ToTensor())
dataset = 'MNIST'
elif args.data == 'fashion':
trainset = torchvision.datasets.FashionMNIST(root='.data', train=True, download=True, transform=transforms.ToTensor())
testset = torchvision.datasets.FashionMNIST(root='.data', train=False, download=True, transform=transforms.ToTensor())
datastet = 'FashionMNIST'
trainloader = torch.utils.data.DataLoader(trainset, batch_size=args.batch_size, shuffle=True, num_workers=args.num_workers)
testloader = torch.utils.data.DataLoader(testset, batch_size=100, shuffle=False, num_workers=args.num_workers)
print(f'[INFO] Using Dataset: {dataset}')
print(f'[INFO] Batch Size: {args.batch_size}')
# Model
print('\n==> Building model...')
if args.model == 'resnet':
net = resnet.ResNet18()
model = 'ResNet-18'
elif args.model == 'lenet':
net = lenet.LeNet()
model = 'LeNet'
print(f'[INFO] Training {model} model')
net = net.to(device)
if device == 'cuda':
net = torch.nn.DataParallel(net)
cudnn.benchmark = True
if args.optimizer == 'sgd':
optimizer = optim.SGD(net.parameters(), lr=args.lr, momentum=0.9, weight_decay=5e-4)
elif args.optimizer == 'adam':
optimizer = optim.Adam(net.parameters(), lr=args.lr, betas=(0.9, 0.999), eps=1e-08, weight_decay=0)
criterion = nn.CrossEntropyLoss()
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=200)
print('\n==> Evaluating model...')
for epoch in range(1, epochs+1):
print(f'\n[INFO] Epoch: {epoch}')
total, data, train_t = train(net, trainloader, optimizer, criterion, device)
total_time += total
data_time += data
train_time += train_t
test(net, testloader, criterion, device)
scheduler.step()
print('[UPDATE] Average Training Loss: %.3f' % (avg_loss/epoch))
total_train_time = data_time + train_time
print('\n[INFO] Best Training Accuracy: %.3f' % best_accuracy)
print('[INFO] Total Data Loading Time: %.3f s' % data_time)
print('[INFO] Total Epoch Training Time: %.3f s' % train_time)
print('[INFO] Total Training Time: %.3f s' % total_train_time)
print('[INFO] Total Training Epoch Time: %.3f s' % total_time)
print()
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='PyTorch Benchmarking')
parser.add_argument('--device', default='cuda', help='GPU or CPU')
parser.add_argument('--data', default='mnist', help='mnist, fashion')
parser.add_argument('--num_workers', default=2, type=int, help='Number of workers')
parser.add_argument('--batch_size', default=128, type=int, help='Batch Size')
parser.add_argument('--model', default='resnet', type=str, help='ResNet-18 or LeNet model')
parser.add_argument('--optimizer', default='sgd', type=str, help='Optimizer')
parser.add_argument('--lr', default=0.1, type=float, help='Learning rate')
parser.add_argument('--epochs', default=10, type=int, help='Epochs to train')
args = parser.parse_args()
main(args)