-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathall_in_one.sh
executable file
·69 lines (65 loc) · 2.13 KB
/
all_in_one.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
# This script shows how to evaluate SPLADEv2 model on SciFact dataset.
# The SPLADEv2 model contains one encoder for both queries and documents.
# The query and document encoder is a DistilBERT model.
# SPLADEv2: https://huggingface.co/naver/splade_v2_distil
# For more details, refer to (Formal et. al. 2021): https://arxiv.org/abs/2109.10086
# Parameters:
# You can add multiple GPUs in the `--gpus` parameter for faster inference.
# Add `beir_` before the dataset name in `--data_name` parameter.
# Dataset will get downloaded in your current path (\datasets) if not present.
# Add model checkpoints (query, document) in `--ckpt_name` parameter.
# Add `--do_quantization` parameter to enable quantization.
# Add `--quantization_method` parameter to specify ndigits-round and `--ndigits` = 2 for rounding off by x100.
python -m sprint_toolkit.inference.aio \
--encoder_name splade \
--ckpt_name naver/splade_v2_distil \
--data_name beir_scifact \
--gpus 0 \
--output_dir beir_scifact-distilsplade_max \
--do_quantization \
--quantization_method ndigits-round \
--ndigits 2 \
--original_query_format beir \
--topic_split test
# {
# "nDCG": {
# "NDCG@1": 0.60333,
# "NDCG@3": 0.65969,
# "NDCG@5": 0.67204,
# "NDCG@10": 0.6925,
# "NDCG@100": 0.7202,
# "NDCG@1000": 0.72753
# },
# "MAP": {
# "MAP@1": 0.57217,
# "MAP@3": 0.63391,
# "MAP@5": 0.64403,
# "MAP@10": 0.65444,
# "MAP@100": 0.66071,
# "MAP@1000": 0.66096
# },
# "Recall": {
# "Recall@1": 0.57217,
# "Recall@3": 0.70172,
# "Recall@5": 0.73461,
# "Recall@10": 0.79122,
# "Recall@100": 0.92033,
# "Recall@1000": 0.98
# },
# "Precision": {
# "P@1": 0.60333,
# "P@3": 0.25444,
# "P@5": 0.16267,
# "P@10": 0.08967,
# "P@100": 0.01043,
# "P@1000": 0.00111
# },
# "mrr": {
# "MRR@1": 0.60333,
# "MRR@3": 0.65722,
# "MRR@5": 0.66306,
# "MRR@10": 0.67052,
# "MRR@100": 0.67503,
# "MRR@1000": 0.67524
# }
# }