-
Notifications
You must be signed in to change notification settings - Fork 61
/
Copy pathtrain_mp3tovec.py
300 lines (254 loc) · 9.54 KB
/
train_mp3tovec.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
import argparse
import os
import pickle
from typing import Dict, List, Tuple
import gensim
import lightning.pytorch as pl
import numpy as np
import torch
import yaml
from audiodiffusion.audio_encoder import AudioEncoder
from lightning.pytorch.callbacks import Callback, ModelCheckpoint
from lightning.pytorch.utilities.rank_zero import rank_zero_only
from PIL import Image
from torch import nn
from torch.utils.data import DataLoader, Dataset, Subset, random_split
from utils import read_tracks
def image_to_tensor(image_path: str) -> torch.Tensor:
"""
Converts an image to a PyTorch tensor.
Args:
image_path (str): Path to the image file.
Returns:
torch.Tensor: A PyTorch tensor of shape (1, 96, 216) representing the image.
"""
image = Image.open(image_path)
image = np.frombuffer(image.tobytes(), dtype="uint8").reshape(
(1, image.height, image.width)
)
image = torch.from_numpy((image / 255) * 2 - 1).type(torch.float32)
return image
class Mp3Dataset(Dataset):
"""
A PyTorch Dataset for loading MP3 spectrograms and taget Track2Vec vectors.
Args:
dir (str): Path to the directory containing the MP3 files.
track2vec (dict): Dictionary mapping MP3 filenames to TrackToVec vectors.
"""
def __init__(self, dir: str, track2vec: dict) -> None:
self.dir = dir
self.files: List = os.listdir(dir)
self.track2vec = track2vec
def __len__(self) -> int:
return len(self.files)
def __getitem__(self, idx: int) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Returns the MP3 spectrogram and the target Track2Vec vector corresponding to an index.
Args:
idx (int): Index of the MP3 file.
Returns:
torch.Tensor: A PyTorch tensor of shape (1, 96, 216) representing the MP3 spectrogram images.
torch.Tensor: A PyTorch tensor of shape (1, 100) representing the target Track2Vec vectors.
"""
mp3_file = self.files[idx]
item = image_to_tensor(
os.path.join(self.dir, f"{mp3_file[: -len('.mp3')]}.png")
)
return item, self.track2vec[mp3_file[: -len(".mp3")]]
class Mp3ToVecModel(pl.LightningModule):
"""
A PyTorch Lightning model for training an MP3ToVec model.
"""
def __init__(self) -> None:
super(Mp3ToVecModel, self).__init__()
self.model = AudioEncoder()
self.cosine_similarity = nn.CosineSimilarity(dim=1)
def forward(self, x: torch.Tensor) -> torch.Tensor:
return self.model(x)
def step(self, batch: Tuple[torch.Tensor, torch.Tensor]) -> torch.Tensor:
x, y = batch
y_hat = self.model(x)
loss = (1 - self.cosine_similarity(y_hat, y)).mean()
return loss
def training_step(
self, batch: Tuple[torch.Tensor, torch.Tensor], batch_idx: int
) -> torch.Tensor:
loss = self.step(batch)
self.log("train_loss", loss)
return loss
def validation_step(
self, batch: Tuple[torch.Tensor, torch.Tensor], batch_idx: int
) -> torch.Tensor:
loss = self.step(batch)
self.log("val_loss", loss)
return loss
def configure_optimizers(self) -> torch.optim.Optimizer:
return torch.optim.Adam(self.model.parameters(), lr=0.001)
def train_val_split(
dataset: Mp3Dataset, train_frac: float = 0.8
) -> List[Subset[Mp3Dataset]]:
"""
Splits a dataset into a training and validation set.
Args:
dataset (torch.utils.data.Dataset): The dataset to split.
train_frac (float): The fraction of the dataset to use for training.
Returns:
torch.utils.data.Dataset: The training dataset.
torch.utils.data.Dataset: The validation dataset.
"""
dataset_size = len(dataset)
train_size = int(train_frac * dataset_size)
val_size = dataset_size - train_size
return random_split(dataset, [train_size, val_size])
def create_dataloaders(
directory: str, track2vec: dict, batch_size: int = 32, num_workers: int = 1
) -> Tuple[DataLoader, DataLoader]:
"""
Creates dataloaders for training and validation.
Args:
directory (str): Path to the directory containing the MP3 files.
track2vec (dict): Dictionary mapping MP3 filenames to TrackToVec vectors.
Returns:
torch.utils.data.DataLoader: The training dataloader.
torch.utils.data.DataLoader: The validation dataloader.
"""
dataset = Mp3Dataset(directory, track2vec)
train_dataset, val_dataset = train_val_split(dataset)
train_loader = DataLoader(
train_dataset, batch_size=batch_size, shuffle=True, num_workers=num_workers
)
val_loader = DataLoader(
val_dataset, batch_size=batch_size, shuffle=False, num_workers=num_workers
)
return train_loader, val_loader
class TestCallback(Callback):
"""
Callback for printing the most similar tracks to each test track after each epoch.
Args:
tracks (dict): Dictionary mapping track IDs to track metadata.
track2vec_model (torch.nn.Module): The trained Track2Vec model.
test_track_ids (list): List of track IDs to use for testing.
test_batch (torch.Tensor): A batch of spectrograms corresponding to the test tracks.
"""
def __init__(
self,
tracks: Dict,
track2vec_model: gensim.models.Word2Vec,
test_track_ids: list,
test_batch: torch.Tensor,
) -> None:
self.track2vec_model = track2vec_model
self.tracks = tracks
self.test_track_ids = test_track_ids
self.test_batch = test_batch
@rank_zero_only
def on_train_epoch_end(
self, trainer: pl.Trainer, pl_module: pl.LightningModule
) -> None:
"""
Prints the most similar tracks to each test track after each epoch.
Args:
trainer (pytorch_lightning.Trainer): The PyTorch Lightning trainer.
pl_module (pytorch_lightning.LightningModule): The PyTorch Lightning module.
"""
if self.test_batch.shape[0] == 0:
return
pl_module.eval()
with torch.no_grad():
vecs = pl_module(self.test_batch.to(pl_module.device))
pl_module.train()
print()
for i, track_id in enumerate(self.test_track_ids):
print(
f"\u001b]8;;{self.tracks[track_id]['url']}\u001b\\{self.tracks[track_id]['artist']} - {self.tracks[track_id]['title']}\u001b]8;;\u001b\\"
) # type: ignore
most_similar = self.track2vec_model.wv.similar_by_vector(
np.array(vecs[i].cpu()), topn=8
)
for i, similar in enumerate(most_similar):
print(
f"{i + 1}. \u001b]8;;{self.tracks[similar[0]]['url']}\u001b\\{self.tracks[similar[0]]['artist']} - {self.tracks[similar[0]]['title']}\u001b]8;;\u001b\\ ({similar[1]:.2f})"
)
print()
if __name__ == "__main__":
"""
Entry point for the train_mp3tovec script.
Trains the MP3ToVec model.
Args:
--config_file (str): Model configuation file. Defaults to config/mp3tovec.yaml.
--mp3tovec_model_dir (str): MP3ToVec model save directory. Defaults to models.
--spectrograms_dir (str): Spectrograms directory. Defaults to spectrograms.
--track2vec_model_file (str): Track2Vec model file. Defaults to models/track2vec.
--tracks_file (str): Track metadata file. Defaults to data/tracks_dedup.json.
Returns:
None
"""
parser = argparse.ArgumentParser()
parser.add_argument(
"--config_file",
type=str,
default="config/mp3tovec.yaml",
help="Model configuation file",
)
parser.add_argument(
"--mp3tovec_model_dir",
type=str,
default="models",
help="MP3ToVec model save directory",
)
parser.add_argument(
"--spectrograms_dir",
type=str,
default="spectrograms",
help="Spectrograms directory",
)
parser.add_argument(
"--track2vec_model_file",
type=str,
default="models/track2vec",
help="Track2Vec model file",
)
parser.add_argument(
"--tracks_file",
type=str,
default="data/tracks_dedup.csv",
help="Tracks CSV file",
)
args = parser.parse_args()
with open(args.config_file, "r") as stream:
config = yaml.safe_load(stream)
track2vec = pickle.load(open(f"{args.track2vec_model_file}.p", "rb"))
train_loader, val_loader = create_dataloaders(
args.spectrograms_dir,
track2vec,
batch_size=config["data"]["batch_size"],
num_workers=config["data"]["num_workers"],
)
track2vec_model = gensim.models.Word2Vec.load(args.track2vec_model_file)
tracks = read_tracks(args.tracks_file)
test_track_ids = config["data"]["test_track_ids"]
test_batch = (
torch.stack(
[
image_to_tensor(
os.path.join(args.spectrograms_dir, f"{test_track_id}.png")
)
for test_track_id in test_track_ids
]
)
if len(test_track_ids) > 0
else torch.Tensor()
)
test_callback = TestCallback(tracks, track2vec_model, test_track_ids, test_batch)
checkpoint_callback = ModelCheckpoint(
save_top_k=1,
monitor="val_loss",
mode="min",
dirpath=args.mp3tovec_model_dir,
filename="mp3tovec",
)
model = Mp3ToVecModel()
trainer = pl.Trainer(
callbacks=[checkpoint_callback, test_callback], **config["trainer"]
)
trainer.fit(model, train_loader, val_loader)