Skip to content

Latest commit

 

History

History
194 lines (153 loc) · 5.86 KB

README.md

File metadata and controls

194 lines (153 loc) · 5.86 KB

rdf_orm

Express RDF classes as Python classes with full Python annotation support. This library depends on RDFLib.

from typing import List, Union

from rdf_orm import RDFModel, MapTo
from rdflib import Literal, URIRef, Namespace, Graph
from rdflib.namespace import OWL, RDFS, RDF

MyOntology = Namespace('https://example.com/')


# Create your models by subclassing RDFModel from rdf_orm.
class Price(RDFModel):
    # Set the class URI type of the model.
    class_uri = MyOntology.Price

    # Mapping dictionary to define how the class attributes are
    # mapped to RDF properties.
    mapping = {
        'currency': MyOntology.hasCurrency,
        'value': RDF.value
    }

    # Use Python type hints to state what the type is for attributes.
    # The below two lines are optional but recommended as it allows
    # IDEs to provide type hints.

    # We don't set a uri attribute on purpose on this Price class in the constructor.
    # The rdf_orm RDFModel will see this and generate a blank node for any relationships pointing to this object.
    currency: Literal
    value: Literal

    def __init__(self, currency: Literal, value: Literal):
        # Call the base class constructor
        super(Price, self).__init__()
        # Call the base class method and pass in the local variables of the
        # current scope and assign it to self.
        self.assign_constructor_vars(locals())


class Item(RDFModel):
    class_uri = MyOntology.Item

    mapping = {
        'label': RDFS.label,
        'price': MyOntology.hasPrice
    }

    uri: URIRef
    label: Literal
    price: Price

    def __init__(self, uri: URIRef, label: Literal, price: Price):
        super(Item, self).__init__()
        self.assign_constructor_vars(locals())


class OWLClass(RDFModel):
    class_uri = OWL.Class

    mapping = {
        'label': RDFS.label,
        # Use the MapTo class to define bidirectional relationships between individuals.
        'items': MapTo(MyOntology.hasItem, MyOntology.isItemOf)
    }

    uri: URIRef
    label: Literal
    # Use Python type hints to express attributes as lists of things.
    # In this case, 'items' is a list of Item or URIRef objects.
    items: List[Union[Item, URIRef]] = None

    def __init__(self, uri: URIRef, label: Literal, items: List[Union[Item, URIRef]] = None):
        super(OWLClass, self).__init__()
        self.assign_constructor_vars(locals())


if __name__ == '__main__':
    # Create a 'global' graph object. We will use this to store the generated data from rdf_orm models.
    g = Graph()

    # Create an instance of the OWLClass model with a list of items.
    individual = OWLClass(
        URIRef('individual-1'),
        Literal('Individual 1'),
        items=[Item(
            URIRef('item-1'),
            Literal('item 1'),
            Price(
                Literal('usd'),
                Literal(15))
        )]
    )

    # Modify the label.
    individual.label = Literal('Individual 1 modified')

    # Create some more standalone items.
    item_two = Item(
        URIRef('item-2'),
        Literal('item 2'),
        Price(
            Literal('aud'),
            Literal(5)
        ))
    item_three = Item(
        URIRef('item-3'),
        Literal('item 3'),
        Price(
            Literal('usd'),
            Literal(11)
        ))
    item_four = Item(
        URIRef('item-4'),
        Literal('item 4'),
        Price(
            Literal('aud'),
            Literal(3)
        )
    )

    # Each rdf_orm model has a local 'g' attribute.
    g += item_two.g + item_three.g

    # Concatenate a list of items to the individual's items.
    individual.items += [item_two, item_three]

    # Add another item using Python's list method 'append'
    individual.items.append(item_four)

    # Add the data of the individual instance to the global graph object.
    g += individual.g

    # Print the global graph object.
    print(g.serialize(format='turtle').decode('utf-8'))

    # Output of the print.
    """
    @prefix ns1: <https://example.com/> .
    @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
    @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
    @prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
    
    <item-1> a ns1:Item ;
        rdfs:label "item 1" ;
        ns1:hasPrice [ a ns1:Price ;
                rdf:value 15 ;
                ns1:hasCurrency "usd" ] ;
        ns1:isItemOf <individual-1> .
    
    <item-2> a ns1:Item ;
        rdfs:label "item 2" ;
        ns1:hasPrice [ a ns1:Price ;
                rdf:value 5 ;
                ns1:hasCurrency "aud" ] ;
        ns1:isItemOf <individual-1> .
    
    <item-3> a ns1:Item ;
        rdfs:label "item 3" ;
        ns1:hasPrice [ a ns1:Price ;
                rdf:value 11 ;
                ns1:hasCurrency "usd" ] ;
        ns1:isItemOf <individual-1> .
    
    <item-4> a ns1:Item ;
        rdfs:label "item 4" ;
        ns1:hasPrice [ a ns1:Price ;
                rdf:value 3 ;
                ns1:hasCurrency "aud" ] ;
        ns1:isItemOf <individual-1> .
    
    <individual-1> a <http://www.w3.org/2002/07/owl#Class> ;
        rdfs:label "Individual 1 modified" ;
        ns1:hasItem <item-1>,
            <item-2>,
            <item-3>,
            <item-4> .
    """

Right now, the Python models generate the RDF data in a local graph on the object. In the future, it would be nice to be able to consume RDF into the model and use the Python classes as an interface to the data.

Other nice to have features would be to register a global rdflib.Graph object with all the models, similar to how SQLAlchemy and Django ORM does it. The rdf_orm can then utilise RDFLib's SPARQLUpdateStore to create/update models in a remote triplestore.

Registration with a global rdflib.Graph will also enable the capability to query it for models with a SQLAlchemy-like interface.

Example:

Item.objects.filter(label='item 2')