diff --git a/pybuda/csrc/passes/lower_to_mlir.cpp b/pybuda/csrc/passes/lower_to_mlir.cpp index 10bb809ec..8244f5476 100644 --- a/pybuda/csrc/passes/lower_to_mlir.cpp +++ b/pybuda/csrc/passes/lower_to_mlir.cpp @@ -45,6 +45,23 @@ using namespace tt; /** * @brief Implementation of TT-MLIR emission from the TTForge graph. */ +mlir::Attribute convert_to_mlir_attribute(const tt::BudaOpAttr& value, mlir::OpBuilder& builder) { + return std::visit([&builder](auto&& arg) -> mlir::Attribute { + using T = std::decay_t; + if constexpr (std::is_same_v) { + return builder.getStringAttr(arg); + } else if constexpr (std::is_same_v) { + return builder.getBoolAttr(arg); + } else if constexpr (std::is_same_v) { + return builder.getI32IntegerAttr(arg); + } else if constexpr (std::is_same_v) { + return builder.getF32FloatAttr(arg); + } else { + // If type not handled, throw an exception or handle it appropriately + throw std::runtime_error("Unhandled attribute type"); + } + }, value); +} class MLIRGenerator { public: @@ -204,7 +221,7 @@ class MLIRGenerator ::llvm::ArrayRef<::llvm::StringRef> operation_attributes = TTIROp::getAttributeNames(); for(auto attribute_name: operation_attributes) { - if(attribute_name.equals("operand_constraints")) + if(attribute_name == "operand_constraints") { // Create operation constraint attributes mlir::NamedAttribute operand_constraints_attribute = builder_.getNamedAttr( @@ -212,7 +229,7 @@ class MLIRGenerator builder_.getArrayAttr(get_mlir_operand_constraint_attributes(graph, op_node))); attributes.push_back(operand_constraints_attribute); } - else if(attribute_name.equals(mlir::OpTrait::AttrSizedOperandSegments::getOperandSegmentSizeAttr())) + else if(attribute_name == mlir::OpTrait::AttrSizedOperandSegments::getOperandSegmentSizeAttr()) { // Create operation segment sizes attributes mlir::NamedAttribute operand_segment_sizes_attribute = builder_.getNamedAttr( @@ -225,15 +242,13 @@ class MLIRGenerator } } - // Workaround for now, need to figure out how to handle this properly - if(op_node->op_name() == "softmax") + for(const auto & attribute: op_node->op_type().named_attrs) { - log_info("Softmax"); - int32_t dimension = std::get(op_node->op_attrs()[0]); - mlir::NamedAttribute dimension_attribute = builder_.getNamedAttr( - "dimension", - builder_.getSI32IntegerAttr(dimension)); - attributes.push_back(dimension_attribute); + // convert atribute to mlir atribute + auto mlir_atribute = convert_to_mlir_attribute(attribute.second, builder_); + mlir::NamedAttribute named_attribute = builder_.getNamedAttr( + attribute.first, mlir_atribute); + attributes.push_back(named_attribute); } auto op = builder_.create( diff --git a/pybuda/pybuda/op/nn.py b/pybuda/pybuda/op/nn.py index 4dfe9282c..54228ed8a 100644 --- a/pybuda/pybuda/op/nn.py +++ b/pybuda/pybuda/op/nn.py @@ -51,7 +51,7 @@ def Softmax( Tensor Buda tensor """ - return op("softmax", name, operandA, attrs=(dim, stable)).get_tensor() + return op("softmax", name, operandA, attrs=(dim, stable), dimension=dim).get_tensor() def LogSoftmax( @@ -82,7 +82,7 @@ def LogSoftmax( Tensor Buda tensor """ - return op("log_softmax", name, operandA, attrs=(dim, stable)).get_tensor() + return op("log_softmax", name, operandA, attrs=(dim, stable), dimension=dim).get_tensor() def Layernorm( name: str,