This repository has been archived by the owner on Dec 11, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 2k
/
Copy pathmodel.py
881 lines (741 loc) · 33 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
# Copyright 2017 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Basic sequence-to-sequence model with dynamic RNN support."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import abc
import collections
import numpy as np
import tensorflow as tf
from . import model_helper
from .utils import iterator_utils
from .utils import misc_utils as utils
from .utils import vocab_utils
utils.check_tensorflow_version()
__all__ = ["BaseModel", "Model"]
class TrainOutputTuple(collections.namedtuple(
"TrainOutputTuple", ("train_summary", "train_loss", "predict_count",
"global_step", "word_count", "batch_size", "grad_norm",
"learning_rate"))):
"""To allow for flexibily in returing different outputs."""
pass
class EvalOutputTuple(collections.namedtuple(
"EvalOutputTuple", ("eval_loss", "predict_count", "batch_size"))):
"""To allow for flexibily in returing different outputs."""
pass
class InferOutputTuple(collections.namedtuple(
"InferOutputTuple", ("infer_logits", "infer_summary", "sample_id",
"sample_words"))):
"""To allow for flexibily in returing different outputs."""
pass
class BaseModel(object):
"""Sequence-to-sequence base class.
"""
def __init__(self,
hparams,
mode,
iterator,
source_vocab_table,
target_vocab_table,
reverse_target_vocab_table=None,
scope=None,
extra_args=None):
"""Create the model.
Args:
hparams: Hyperparameter configurations.
mode: TRAIN | EVAL | INFER
iterator: Dataset Iterator that feeds data.
source_vocab_table: Lookup table mapping source words to ids.
target_vocab_table: Lookup table mapping target words to ids.
reverse_target_vocab_table: Lookup table mapping ids to target words. Only
required in INFER mode. Defaults to None.
scope: scope of the model.
extra_args: model_helper.ExtraArgs, for passing customizable functions.
"""
# Set params
self._set_params_initializer(hparams, mode, iterator,
source_vocab_table, target_vocab_table,
scope, extra_args)
# Not used in general seq2seq models; when True, ignore decoder & training
self.extract_encoder_layers = (hasattr(hparams, "extract_encoder_layers")
and hparams.extract_encoder_layers)
# Train graph
res = self.build_graph(hparams, scope=scope)
if not self.extract_encoder_layers:
self._set_train_or_infer(res, reverse_target_vocab_table, hparams)
# Saver
self.saver = tf.train.Saver(
tf.global_variables(), max_to_keep=hparams.num_keep_ckpts)
def _set_params_initializer(self,
hparams,
mode,
iterator,
source_vocab_table,
target_vocab_table,
scope,
extra_args=None):
"""Set various params for self and initialize."""
assert isinstance(iterator, iterator_utils.BatchedInput)
self.iterator = iterator
self.mode = mode
self.src_vocab_table = source_vocab_table
self.tgt_vocab_table = target_vocab_table
self.src_vocab_size = hparams.src_vocab_size
self.tgt_vocab_size = hparams.tgt_vocab_size
self.num_gpus = hparams.num_gpus
self.time_major = hparams.time_major
if hparams.use_char_encode:
assert (not self.time_major), ("Can't use time major for"
" char-level inputs.")
self.dtype = tf.float32
self.num_sampled_softmax = hparams.num_sampled_softmax
# extra_args: to make it flexible for adding external customizable code
self.single_cell_fn = None
if extra_args:
self.single_cell_fn = extra_args.single_cell_fn
# Set num units
self.num_units = hparams.num_units
# Set num layers
self.num_encoder_layers = hparams.num_encoder_layers
self.num_decoder_layers = hparams.num_decoder_layers
assert self.num_encoder_layers
assert self.num_decoder_layers
# Set num residual layers
if hasattr(hparams, "num_residual_layers"): # compatible common_test_utils
self.num_encoder_residual_layers = hparams.num_residual_layers
self.num_decoder_residual_layers = hparams.num_residual_layers
else:
self.num_encoder_residual_layers = hparams.num_encoder_residual_layers
self.num_decoder_residual_layers = hparams.num_decoder_residual_layers
# Batch size
self.batch_size = tf.size(self.iterator.source_sequence_length)
# Global step
self.global_step = tf.Variable(0, trainable=False)
# Initializer
self.random_seed = hparams.random_seed
initializer = model_helper.get_initializer(
hparams.init_op, self.random_seed, hparams.init_weight)
tf.get_variable_scope().set_initializer(initializer)
# Embeddings
if extra_args and extra_args.encoder_emb_lookup_fn:
self.encoder_emb_lookup_fn = extra_args.encoder_emb_lookup_fn
else:
self.encoder_emb_lookup_fn = tf.nn.embedding_lookup
self.init_embeddings(hparams, scope)
def _set_train_or_infer(self, res, reverse_target_vocab_table, hparams):
"""Set up training and inference."""
if self.mode == tf.contrib.learn.ModeKeys.TRAIN:
self.train_loss = res[1]
self.word_count = tf.reduce_sum(
self.iterator.source_sequence_length) + tf.reduce_sum(
self.iterator.target_sequence_length)
elif self.mode == tf.contrib.learn.ModeKeys.EVAL:
self.eval_loss = res[1]
elif self.mode == tf.contrib.learn.ModeKeys.INFER:
self.infer_logits, _, self.final_context_state, self.sample_id = res
self.sample_words = reverse_target_vocab_table.lookup(
tf.to_int64(self.sample_id))
if self.mode != tf.contrib.learn.ModeKeys.INFER:
## Count the number of predicted words for compute ppl.
self.predict_count = tf.reduce_sum(
self.iterator.target_sequence_length)
params = tf.trainable_variables()
# Gradients and SGD update operation for training the model.
# Arrange for the embedding vars to appear at the beginning.
if self.mode == tf.contrib.learn.ModeKeys.TRAIN:
self.learning_rate = tf.constant(hparams.learning_rate)
# warm-up
self.learning_rate = self._get_learning_rate_warmup(hparams)
# decay
self.learning_rate = self._get_learning_rate_decay(hparams)
# Optimizer
if hparams.optimizer == "sgd":
opt = tf.train.GradientDescentOptimizer(self.learning_rate)
elif hparams.optimizer == "adam":
opt = tf.train.AdamOptimizer(self.learning_rate)
else:
raise ValueError("Unknown optimizer type %s" % hparams.optimizer)
# Gradients
gradients = tf.gradients(
self.train_loss,
params,
colocate_gradients_with_ops=hparams.colocate_gradients_with_ops)
clipped_grads, grad_norm_summary, grad_norm = model_helper.gradient_clip(
gradients, max_gradient_norm=hparams.max_gradient_norm)
self.grad_norm_summary = grad_norm_summary
self.grad_norm = grad_norm
self.update = opt.apply_gradients(
zip(clipped_grads, params), global_step=self.global_step)
# Summary
self.train_summary = self._get_train_summary()
elif self.mode == tf.contrib.learn.ModeKeys.INFER:
self.infer_summary = self._get_infer_summary(hparams)
# Print trainable variables
utils.print_out("# Trainable variables")
utils.print_out("Format: <name>, <shape>, <(soft) device placement>")
for param in params:
utils.print_out(" %s, %s, %s" % (param.name, str(param.get_shape()),
param.op.device))
def _get_learning_rate_warmup(self, hparams):
"""Get learning rate warmup."""
warmup_steps = hparams.warmup_steps
warmup_scheme = hparams.warmup_scheme
utils.print_out(" learning_rate=%g, warmup_steps=%d, warmup_scheme=%s" %
(hparams.learning_rate, warmup_steps, warmup_scheme))
# Apply inverse decay if global steps less than warmup steps.
# Inspired by https://arxiv.org/pdf/1706.03762.pdf (Section 5.3)
# When step < warmup_steps,
# learing_rate *= warmup_factor ** (warmup_steps - step)
if warmup_scheme == "t2t":
# 0.01^(1/warmup_steps): we start with a lr, 100 times smaller
warmup_factor = tf.exp(tf.log(0.01) / warmup_steps)
inv_decay = warmup_factor**(
tf.to_float(warmup_steps - self.global_step))
else:
raise ValueError("Unknown warmup scheme %s" % warmup_scheme)
return tf.cond(
self.global_step < hparams.warmup_steps,
lambda: inv_decay * self.learning_rate,
lambda: self.learning_rate,
name="learning_rate_warmup_cond")
def _get_decay_info(self, hparams):
"""Return decay info based on decay_scheme."""
if hparams.decay_scheme in ["luong5", "luong10", "luong234"]:
decay_factor = 0.5
if hparams.decay_scheme == "luong5":
start_decay_step = int(hparams.num_train_steps / 2)
decay_times = 5
elif hparams.decay_scheme == "luong10":
start_decay_step = int(hparams.num_train_steps / 2)
decay_times = 10
elif hparams.decay_scheme == "luong234":
start_decay_step = int(hparams.num_train_steps * 2 / 3)
decay_times = 4
remain_steps = hparams.num_train_steps - start_decay_step
decay_steps = int(remain_steps / decay_times)
elif not hparams.decay_scheme: # no decay
start_decay_step = hparams.num_train_steps
decay_steps = 0
decay_factor = 1.0
elif hparams.decay_scheme:
raise ValueError("Unknown decay scheme %s" % hparams.decay_scheme)
return start_decay_step, decay_steps, decay_factor
def _get_learning_rate_decay(self, hparams):
"""Get learning rate decay."""
start_decay_step, decay_steps, decay_factor = self._get_decay_info(hparams)
utils.print_out(" decay_scheme=%s, start_decay_step=%d, decay_steps %d, "
"decay_factor %g" % (hparams.decay_scheme,
start_decay_step,
decay_steps,
decay_factor))
return tf.cond(
self.global_step < start_decay_step,
lambda: self.learning_rate,
lambda: tf.train.exponential_decay(
self.learning_rate,
(self.global_step - start_decay_step),
decay_steps, decay_factor, staircase=True),
name="learning_rate_decay_cond")
def init_embeddings(self, hparams, scope):
"""Init embeddings."""
self.embedding_encoder, self.embedding_decoder = (
model_helper.create_emb_for_encoder_and_decoder(
share_vocab=hparams.share_vocab,
src_vocab_size=self.src_vocab_size,
tgt_vocab_size=self.tgt_vocab_size,
src_embed_size=self.num_units,
tgt_embed_size=self.num_units,
num_enc_partitions=hparams.num_enc_emb_partitions,
num_dec_partitions=hparams.num_dec_emb_partitions,
src_vocab_file=hparams.src_vocab_file,
tgt_vocab_file=hparams.tgt_vocab_file,
src_embed_file=hparams.src_embed_file,
tgt_embed_file=hparams.tgt_embed_file,
use_char_encode=hparams.use_char_encode,
scope=scope,))
def _get_train_summary(self):
"""Get train summary."""
train_summary = tf.summary.merge(
[tf.summary.scalar("lr", self.learning_rate),
tf.summary.scalar("train_loss", self.train_loss)] +
self.grad_norm_summary)
return train_summary
def train(self, sess):
"""Execute train graph."""
assert self.mode == tf.contrib.learn.ModeKeys.TRAIN
output_tuple = TrainOutputTuple(train_summary=self.train_summary,
train_loss=self.train_loss,
predict_count=self.predict_count,
global_step=self.global_step,
word_count=self.word_count,
batch_size=self.batch_size,
grad_norm=self.grad_norm,
learning_rate=self.learning_rate)
return sess.run([self.update, output_tuple])
def eval(self, sess):
"""Execute eval graph."""
assert self.mode == tf.contrib.learn.ModeKeys.EVAL
output_tuple = EvalOutputTuple(eval_loss=self.eval_loss,
predict_count=self.predict_count,
batch_size=self.batch_size)
return sess.run(output_tuple)
def build_graph(self, hparams, scope=None):
"""Subclass must implement this method.
Creates a sequence-to-sequence model with dynamic RNN decoder API.
Args:
hparams: Hyperparameter configurations.
scope: VariableScope for the created subgraph; default "dynamic_seq2seq".
Returns:
A tuple of the form (logits, loss_tuple, final_context_state, sample_id),
where:
logits: float32 Tensor [batch_size x num_decoder_symbols].
loss: loss = the total loss / batch_size.
final_context_state: the final state of decoder RNN.
sample_id: sampling indices.
Raises:
ValueError: if encoder_type differs from mono and bi, or
attention_option is not (luong | scaled_luong |
bahdanau | normed_bahdanau).
"""
utils.print_out("# Creating %s graph ..." % self.mode)
# Projection
if not self.extract_encoder_layers:
with tf.variable_scope(scope or "build_network"):
with tf.variable_scope("decoder/output_projection"):
self.output_layer = tf.layers.Dense(
self.tgt_vocab_size, use_bias=False, name="output_projection")
with tf.variable_scope(scope or "dynamic_seq2seq", dtype=self.dtype):
# Encoder
if hparams.language_model: # no encoder for language modeling
utils.print_out(" language modeling: no encoder")
self.encoder_outputs = None
encoder_state = None
else:
self.encoder_outputs, encoder_state = self._build_encoder(hparams)
# Skip decoder if extracting only encoder layers
if self.extract_encoder_layers:
return
## Decoder
logits, decoder_cell_outputs, sample_id, final_context_state = (
self._build_decoder(self.encoder_outputs, encoder_state, hparams))
## Loss
if self.mode != tf.contrib.learn.ModeKeys.INFER:
with tf.device(model_helper.get_device_str(self.num_encoder_layers - 1,
self.num_gpus)):
loss = self._compute_loss(logits, decoder_cell_outputs)
else:
loss = tf.constant(0.0)
return logits, loss, final_context_state, sample_id
@abc.abstractmethod
def _build_encoder(self, hparams):
"""Subclass must implement this.
Build and run an RNN encoder.
Args:
hparams: Hyperparameters configurations.
Returns:
A tuple of encoder_outputs and encoder_state.
"""
pass
def _build_encoder_cell(self, hparams, num_layers, num_residual_layers,
base_gpu=0):
"""Build a multi-layer RNN cell that can be used by encoder."""
return model_helper.create_rnn_cell(
unit_type=hparams.unit_type,
num_units=self.num_units,
num_layers=num_layers,
num_residual_layers=num_residual_layers,
forget_bias=hparams.forget_bias,
dropout=hparams.dropout,
num_gpus=hparams.num_gpus,
mode=self.mode,
base_gpu=base_gpu,
single_cell_fn=self.single_cell_fn)
def _get_infer_maximum_iterations(self, hparams, source_sequence_length):
"""Maximum decoding steps at inference time."""
if hparams.tgt_max_len_infer:
maximum_iterations = hparams.tgt_max_len_infer
utils.print_out(" decoding maximum_iterations %d" % maximum_iterations)
else:
# TODO(thangluong): add decoding_length_factor flag
decoding_length_factor = 2.0
max_encoder_length = tf.reduce_max(source_sequence_length)
maximum_iterations = tf.to_int32(tf.round(
tf.to_float(max_encoder_length) * decoding_length_factor))
return maximum_iterations
def _build_decoder(self, encoder_outputs, encoder_state, hparams):
"""Build and run a RNN decoder with a final projection layer.
Args:
encoder_outputs: The outputs of encoder for every time step.
encoder_state: The final state of the encoder.
hparams: The Hyperparameters configurations.
Returns:
A tuple of final logits and final decoder state:
logits: size [time, batch_size, vocab_size] when time_major=True.
"""
tgt_sos_id = tf.cast(self.tgt_vocab_table.lookup(tf.constant(hparams.sos)),
tf.int32)
tgt_eos_id = tf.cast(self.tgt_vocab_table.lookup(tf.constant(hparams.eos)),
tf.int32)
iterator = self.iterator
# maximum_iteration: The maximum decoding steps.
maximum_iterations = self._get_infer_maximum_iterations(
hparams, iterator.source_sequence_length)
## Decoder.
with tf.variable_scope("decoder") as decoder_scope:
cell, decoder_initial_state = self._build_decoder_cell(
hparams, encoder_outputs, encoder_state,
iterator.source_sequence_length)
# Optional ops depends on which mode we are in and which loss function we
# are using.
logits = tf.no_op()
decoder_cell_outputs = None
## Train or eval
if self.mode != tf.contrib.learn.ModeKeys.INFER:
# decoder_emp_inp: [max_time, batch_size, num_units]
target_input = iterator.target_input
if self.time_major:
target_input = tf.transpose(target_input)
decoder_emb_inp = tf.nn.embedding_lookup(
self.embedding_decoder, target_input)
# Helper
helper = tf.contrib.seq2seq.TrainingHelper(
decoder_emb_inp, iterator.target_sequence_length,
time_major=self.time_major)
# Decoder
my_decoder = tf.contrib.seq2seq.BasicDecoder(
cell,
helper,
decoder_initial_state,)
# Dynamic decoding
outputs, final_context_state, _ = tf.contrib.seq2seq.dynamic_decode(
my_decoder,
output_time_major=self.time_major,
swap_memory=True,
scope=decoder_scope)
sample_id = outputs.sample_id
if self.num_sampled_softmax > 0:
# Note: this is required when using sampled_softmax_loss.
decoder_cell_outputs = outputs.rnn_output
# Note: there's a subtle difference here between train and inference.
# We could have set output_layer when create my_decoder
# and shared more code between train and inference.
# We chose to apply the output_layer to all timesteps for speed:
# 10% improvements for small models & 20% for larger ones.
# If memory is a concern, we should apply output_layer per timestep.
num_layers = self.num_decoder_layers
num_gpus = self.num_gpus
device_id = num_layers if num_layers < num_gpus else (num_layers - 1)
# Colocate output layer with the last RNN cell if there is no extra GPU
# available. Otherwise, put last layer on a separate GPU.
with tf.device(model_helper.get_device_str(device_id, num_gpus)):
logits = self.output_layer(outputs.rnn_output)
if self.num_sampled_softmax > 0:
logits = tf.no_op() # unused when using sampled softmax loss.
## Inference
else:
infer_mode = hparams.infer_mode
start_tokens = tf.fill([self.batch_size], tgt_sos_id)
end_token = tgt_eos_id
utils.print_out(
" decoder: infer_mode=%sbeam_width=%d, "
"length_penalty=%f, coverage_penalty=%f"
% (infer_mode, hparams.beam_width, hparams.length_penalty_weight,
hparams.coverage_penalty_weight))
if infer_mode == "beam_search":
beam_width = hparams.beam_width
length_penalty_weight = hparams.length_penalty_weight
coverage_penalty_weight = hparams.coverage_penalty_weight
my_decoder = tf.contrib.seq2seq.BeamSearchDecoder(
cell=cell,
embedding=self.embedding_decoder,
start_tokens=start_tokens,
end_token=end_token,
initial_state=decoder_initial_state,
beam_width=beam_width,
output_layer=self.output_layer,
length_penalty_weight=length_penalty_weight,
coverage_penalty_weight=coverage_penalty_weight)
elif infer_mode == "sample":
# Helper
sampling_temperature = hparams.sampling_temperature
assert sampling_temperature > 0.0, (
"sampling_temperature must greater than 0.0 when using sample"
" decoder.")
helper = tf.contrib.seq2seq.SampleEmbeddingHelper(
self.embedding_decoder, start_tokens, end_token,
softmax_temperature=sampling_temperature,
seed=self.random_seed)
elif infer_mode == "greedy":
helper = tf.contrib.seq2seq.GreedyEmbeddingHelper(
self.embedding_decoder, start_tokens, end_token)
else:
raise ValueError("Unknown infer_mode '%s'", infer_mode)
if infer_mode != "beam_search":
my_decoder = tf.contrib.seq2seq.BasicDecoder(
cell,
helper,
decoder_initial_state,
output_layer=self.output_layer # applied per timestep
)
# Dynamic decoding
outputs, final_context_state, _ = tf.contrib.seq2seq.dynamic_decode(
my_decoder,
maximum_iterations=maximum_iterations,
output_time_major=self.time_major,
swap_memory=True,
scope=decoder_scope)
if infer_mode == "beam_search":
sample_id = outputs.predicted_ids
else:
logits = outputs.rnn_output
sample_id = outputs.sample_id
return logits, decoder_cell_outputs, sample_id, final_context_state
def get_max_time(self, tensor):
time_axis = 0 if self.time_major else 1
return tensor.shape[time_axis].value or tf.shape(tensor)[time_axis]
@abc.abstractmethod
def _build_decoder_cell(self, hparams, encoder_outputs, encoder_state,
source_sequence_length):
"""Subclass must implement this.
Args:
hparams: Hyperparameters configurations.
encoder_outputs: The outputs of encoder for every time step.
encoder_state: The final state of the encoder.
source_sequence_length: sequence length of encoder_outputs.
Returns:
A tuple of a multi-layer RNN cell used by decoder and the intial state of
the decoder RNN.
"""
pass
def _softmax_cross_entropy_loss(
self, logits, decoder_cell_outputs, labels):
"""Compute softmax loss or sampled softmax loss."""
if self.num_sampled_softmax > 0:
is_sequence = (decoder_cell_outputs.shape.ndims == 3)
if is_sequence:
labels = tf.reshape(labels, [-1, 1])
inputs = tf.reshape(decoder_cell_outputs, [-1, self.num_units])
crossent = tf.nn.sampled_softmax_loss(
weights=tf.transpose(self.output_layer.kernel),
biases=self.output_layer.bias or tf.zeros([self.tgt_vocab_size]),
labels=labels,
inputs=inputs,
num_sampled=self.num_sampled_softmax,
num_classes=self.tgt_vocab_size,
partition_strategy="div",
seed=self.random_seed)
if is_sequence:
if self.time_major:
crossent = tf.reshape(crossent, [-1, self.batch_size])
else:
crossent = tf.reshape(crossent, [self.batch_size, -1])
else:
crossent = tf.nn.sparse_softmax_cross_entropy_with_logits(
labels=labels, logits=logits)
return crossent
def _compute_loss(self, logits, decoder_cell_outputs):
"""Compute optimization loss."""
target_output = self.iterator.target_output
if self.time_major:
target_output = tf.transpose(target_output)
max_time = self.get_max_time(target_output)
crossent = self._softmax_cross_entropy_loss(
logits, decoder_cell_outputs, target_output)
target_weights = tf.sequence_mask(
self.iterator.target_sequence_length, max_time, dtype=self.dtype)
if self.time_major:
target_weights = tf.transpose(target_weights)
loss = tf.reduce_sum(
crossent * target_weights) / tf.to_float(self.batch_size)
return loss
def _get_infer_summary(self, hparams):
del hparams
return tf.no_op()
def infer(self, sess):
assert self.mode == tf.contrib.learn.ModeKeys.INFER
output_tuple = InferOutputTuple(infer_logits=self.infer_logits,
infer_summary=self.infer_summary,
sample_id=self.sample_id,
sample_words=self.sample_words)
return sess.run(output_tuple)
def decode(self, sess):
"""Decode a batch.
Args:
sess: tensorflow session to use.
Returns:
A tuple consiting of outputs, infer_summary.
outputs: of size [batch_size, time]
"""
output_tuple = self.infer(sess)
sample_words = output_tuple.sample_words
infer_summary = output_tuple.infer_summary
# make sure outputs is of shape [batch_size, time] or [beam_width,
# batch_size, time] when using beam search.
if self.time_major:
sample_words = sample_words.transpose()
elif sample_words.ndim == 3:
# beam search output in [batch_size, time, beam_width] shape.
sample_words = sample_words.transpose([2, 0, 1])
return sample_words, infer_summary
def build_encoder_states(self, include_embeddings=False):
"""Stack encoder states and return tensor [batch, length, layer, size]."""
assert self.mode == tf.contrib.learn.ModeKeys.INFER
if include_embeddings:
stack_state_list = tf.stack(
[self.encoder_emb_inp] + self.encoder_state_list, 2)
else:
stack_state_list = tf.stack(self.encoder_state_list, 2)
# transform from [length, batch, ...] -> [batch, length, ...]
if self.time_major:
stack_state_list = tf.transpose(stack_state_list, [1, 0, 2, 3])
return stack_state_list
class Model(BaseModel):
"""Sequence-to-sequence dynamic model.
This class implements a multi-layer recurrent neural network as encoder,
and a multi-layer recurrent neural network decoder.
"""
def _build_encoder_from_sequence(self, hparams, sequence, sequence_length):
"""Build an encoder from a sequence.
Args:
hparams: hyperparameters.
sequence: tensor with input sequence data.
sequence_length: tensor with length of the input sequence.
Returns:
encoder_outputs: RNN encoder outputs.
encoder_state: RNN encoder state.
Raises:
ValueError: if encoder_type is neither "uni" nor "bi".
"""
num_layers = self.num_encoder_layers
num_residual_layers = self.num_encoder_residual_layers
if self.time_major:
sequence = tf.transpose(sequence)
with tf.variable_scope("encoder") as scope:
dtype = scope.dtype
self.encoder_emb_inp = self.encoder_emb_lookup_fn(
self.embedding_encoder, sequence)
# Encoder_outputs: [max_time, batch_size, num_units]
if hparams.encoder_type == "uni":
utils.print_out(" num_layers = %d, num_residual_layers=%d" %
(num_layers, num_residual_layers))
cell = self._build_encoder_cell(hparams, num_layers,
num_residual_layers)
encoder_outputs, encoder_state = tf.nn.dynamic_rnn(
cell,
self.encoder_emb_inp,
dtype=dtype,
sequence_length=sequence_length,
time_major=self.time_major,
swap_memory=True)
elif hparams.encoder_type == "bi":
num_bi_layers = int(num_layers / 2)
num_bi_residual_layers = int(num_residual_layers / 2)
utils.print_out(" num_bi_layers = %d, num_bi_residual_layers=%d" %
(num_bi_layers, num_bi_residual_layers))
encoder_outputs, bi_encoder_state = (
self._build_bidirectional_rnn(
inputs=self.encoder_emb_inp,
sequence_length=sequence_length,
dtype=dtype,
hparams=hparams,
num_bi_layers=num_bi_layers,
num_bi_residual_layers=num_bi_residual_layers))
if num_bi_layers == 1:
encoder_state = bi_encoder_state
else:
# alternatively concat forward and backward states
encoder_state = []
for layer_id in range(num_bi_layers):
encoder_state.append(bi_encoder_state[0][layer_id]) # forward
encoder_state.append(bi_encoder_state[1][layer_id]) # backward
encoder_state = tuple(encoder_state)
else:
raise ValueError("Unknown encoder_type %s" % hparams.encoder_type)
# Use the top layer for now
self.encoder_state_list = [encoder_outputs]
return encoder_outputs, encoder_state
def _build_encoder(self, hparams):
"""Build encoder from source."""
utils.print_out("# Build a basic encoder")
return self._build_encoder_from_sequence(
hparams, self.iterator.source, self.iterator.source_sequence_length)
def _build_bidirectional_rnn(self, inputs, sequence_length,
dtype, hparams,
num_bi_layers,
num_bi_residual_layers,
base_gpu=0):
"""Create and call biddirectional RNN cells.
Args:
num_residual_layers: Number of residual layers from top to bottom. For
example, if `num_bi_layers=4` and `num_residual_layers=2`, the last 2 RNN
layers in each RNN cell will be wrapped with `ResidualWrapper`.
base_gpu: The gpu device id to use for the first forward RNN layer. The
i-th forward RNN layer will use `(base_gpu + i) % num_gpus` as its
device id. The `base_gpu` for backward RNN cell is `(base_gpu +
num_bi_layers)`.
Returns:
The concatenated bidirectional output and the bidirectional RNN cell"s
state.
"""
# Construct forward and backward cells
fw_cell = self._build_encoder_cell(hparams,
num_bi_layers,
num_bi_residual_layers,
base_gpu=base_gpu)
bw_cell = self._build_encoder_cell(hparams,
num_bi_layers,
num_bi_residual_layers,
base_gpu=(base_gpu + num_bi_layers))
bi_outputs, bi_state = tf.nn.bidirectional_dynamic_rnn(
fw_cell,
bw_cell,
inputs,
dtype=dtype,
sequence_length=sequence_length,
time_major=self.time_major,
swap_memory=True)
return tf.concat(bi_outputs, -1), bi_state
def _build_decoder_cell(self, hparams, encoder_outputs, encoder_state,
source_sequence_length, base_gpu=0):
"""Build an RNN cell that can be used by decoder."""
# We only make use of encoder_outputs in attention-based models
if hparams.attention:
raise ValueError("BasicModel doesn't support attention.")
cell = model_helper.create_rnn_cell(
unit_type=hparams.unit_type,
num_units=self.num_units,
num_layers=self.num_decoder_layers,
num_residual_layers=self.num_decoder_residual_layers,
forget_bias=hparams.forget_bias,
dropout=hparams.dropout,
num_gpus=self.num_gpus,
mode=self.mode,
single_cell_fn=self.single_cell_fn,
base_gpu=base_gpu
)
if hparams.language_model:
encoder_state = cell.zero_state(self.batch_size, self.dtype)
elif not hparams.pass_hidden_state:
raise ValueError("For non-attentional model, "
"pass_hidden_state needs to be set to True")
# For beam search, we need to replicate encoder infos beam_width times
if (self.mode == tf.contrib.learn.ModeKeys.INFER and
hparams.infer_mode == "beam_search"):
decoder_initial_state = tf.contrib.seq2seq.tile_batch(
encoder_state, multiplier=hparams.beam_width)
else:
decoder_initial_state = encoder_state
return cell, decoder_initial_state