-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmanager.go
158 lines (140 loc) · 6.07 KB
/
manager.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
// Package enzu implements a hierarchical AI orchestration system where SynergyManager
// sits at the top level, coordinating multiple Synergies. Each Synergy, in turn,
// manages multiple Agents working together toward specific objectives.
//
// The manager layer provides high-level orchestration capabilities:
// - Parallel execution of multiple Synergies
// - Result synthesis across different AI workflows
// - Centralized logging and error handling
// - Cross-Synergy coordination and conflict resolution
package enzu
import (
"context"
"fmt"
"github.com/teilomillet/gollm"
)
// SynergyManager is the top-level coordinator in the Enzu framework's hierarchy.
// It orchestrates multiple Synergies, each representing a distinct AI workflow,
// and synthesizes their results into coherent outputs.
//
// The manager serves several key purposes in the framework:
// 1. Workflow Orchestration: Coordinates multiple AI workflows running in parallel
// 2. Result Synthesis: Combines outputs from different Synergies into meaningful insights
// 3. Resource Management: Centralizes LLM usage and logging across workflows
// 4. Error Handling: Provides system-wide error management and recovery
type SynergyManager struct {
// name identifies this manager instance
name string
// llm is the language model used for result synthesis
llm gollm.LLM
// synergies are the AI workflows being managed
synergies []*Synergy
// logger provides centralized logging for all managed Synergies
logger *Logger
}
// NewSynergyManager creates a new SynergyManager instance that will coordinate
// multiple AI workflows through their respective Synergies.
//
// The manager uses its own LLM instance specifically for synthesizing results
// across different Synergies, ensuring that cross-workflow insights can be
// generated without interfering with individual Synergy operations.
//
// Parameters:
// - name: Identifier for this manager instance
// - llm: Language model used for result synthesis
// - logger: Centralized logger for all managed workflows
//
// Returns:
// - *SynergyManager: A new manager instance ready to coordinate AI workflows
func NewSynergyManager(name string, llm gollm.LLM, logger *Logger) *SynergyManager {
return &SynergyManager{
name: name,
llm: llm,
synergies: make([]*Synergy, 0),
logger: logger,
}
}
// AddSynergy registers a new Synergy with the manager for coordination.
// Each Synergy represents a distinct AI workflow with its own objective,
// agents, and tools. The manager will execute and coordinate all registered
// Synergies during workflow execution.
//
// Parameters:
// - s: The Synergy to be managed
func (sm *SynergyManager) AddSynergy(s *Synergy) {
sm.synergies = append(sm.synergies, s)
}
// ExecuteSynergies runs all managed Synergies and synthesizes their results
// into a coherent output. This is the main entry point for executing complex
// AI workflows that require coordination across multiple objectives.
//
// The execution process:
// 1. Runs all Synergies in sequence (future: parallel execution)
// 2. Collects results from each Synergy
// 3. Synthesizes all results using the manager's LLM
// 4. Provides a unified view of the entire workflow's output
//
// Parameters:
// - ctx: Context for cancellation and deadline control
// - initialPrompt: The original user request or objective
//
// Returns:
// - map[string]interface{}: Synthesized results from all Synergies
// - error: Any error encountered during execution or synthesis
func (sm *SynergyManager) ExecuteSynergies(ctx context.Context, initialPrompt string) (map[string]interface{}, error) {
sm.logger.Info("SynergyManager", "Starting execution of all Synergies")
allResults := make(map[string]interface{})
for _, synergy := range sm.synergies {
sm.logger.Info("SynergyManager", "Executing Synergy: %s", synergy.objective)
results, err := synergy.Execute(ctx)
if err != nil {
sm.logger.Error("SynergyManager", "Error executing Synergy %s: %v", synergy.objective, err)
return nil, err
}
for k, v := range results {
allResults[fmt.Sprintf("%s:%s", synergy.objective, k)] = v
}
}
// Use the manager's LLM to synthesize the results
synthesizedResults, err := sm.synthesizeResults(ctx, allResults, initialPrompt)
if err != nil {
sm.logger.Error("SynergyManager", "Error synthesizing results: %v", err)
return nil, err
}
sm.logger.Info("SynergyManager", "All Synergies executed and results synthesized")
return synthesizedResults, nil
}
// synthesizeResults combines outputs from multiple Synergies into a coherent summary.
// It uses the manager's LLM to analyze results across different workflows, identify
// patterns, resolve conflicts, and generate insights that might not be apparent
// when looking at individual Synergy results in isolation.
//
// The synthesis process:
// 1. Formats all Synergy results and the initial prompt
// 2. Constructs a meta-prompt for the LLM to analyze the results
// 3. Generates a comprehensive synthesis highlighting key insights
//
// Parameters:
// - ctx: Context for cancellation and deadline control
// - results: Combined results from all Synergies
// - initialPrompt: The original user request for context
//
// Returns:
// - map[string]interface{}: Synthesized insights and conclusions
// - error: Any error encountered during synthesis
func (sm *SynergyManager) synthesizeResults(ctx context.Context, results map[string]interface{}, initialPrompt string) (map[string]interface{}, error) {
resultString := fmt.Sprintf("Initial prompt: %s\n\nResults from Synergies:\n", initialPrompt)
for k, v := range results {
resultString += fmt.Sprintf("%s: %v\n", k, v)
}
prompt := fmt.Sprintf(
"As a manager overseeing multiple AI Synergies, synthesize the following results into a cohesive summary. "+
"Highlight key insights, resolve any conflicts, and provide an overall conclusion.\n\n%s",
resultString,
)
response, err := gollm.LLM(sm.llm).Generate(ctx, gollm.NewPrompt(prompt))
if err != nil {
return nil, fmt.Errorf("error generating synthesis: %w", err)
}
return map[string]interface{}{"synthesis": response}, nil
}