-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathcycle_app.py
81 lines (60 loc) · 2.32 KB
/
cycle_app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
import streamlit as st
import pandas as pd
import numpy as np
import pickle
from sklearn.linear_model import LinearRegression
from sklearn.ensemble import RandomForestClassifier
st.write("""
# Cycle Flow
This app predicts the **Estimated Day of ** Ovulation!
""")
st.sidebar.header('User Input Features')
st.sidebar.markdown("""
[Example CSV input file](sample.csv)
""")
# Collects user input features into dataframe
uploaded_file = st.sidebar.file_uploader("Upload your input CSV file", type=["csv"])
if uploaded_file is not None:
input_df = pd.read_csv(uploaded_file)
else:
def user_input_features():
LengthofCycle = st.sidebar.slider('Cycle length', 10,50,23)
LengthofLutealPhase = st.sidebar.slider('luetal phase', 0,30,7)
LengthofMenses = st.sidebar.slider('Menses depth', 0,20,10)
data = {
'LengthofCycle': LengthofCycle,
'LengthofLutealPhase': LengthofLutealPhase,
'LengthofMenses': LengthofMenses
}
features = pd.DataFrame(data, index=[0])
return features
input_df = user_input_features()
# Combines user input features with entire dataset
# This will be useful for the encoding phase
cycle_raw = pd.read_csv("clean_dataset.csv")
cycle = cycle_raw.drop(columns=['EstimatedDayofOvulation'], axis=1)
df = pd.concat([input_df,cycle],axis=0)
# Encoding of ordinal features species
encode = ['LengthofCycle','LengthofLutealPhase']
for col in encode:
dummy = pd.get_dummies(df[col], prefix=col)
df = pd.concat([df,dummy], axis=1)
del df[col]
df = df[:1] # Selects only the first row (the user input data)
# Displays the user input features
st.subheader('User Input features')
if uploaded_file is not None:
st.write(df)
else:
st.write('Awaiting CSV file to be uploaded.')
st.write(df)
# Reads in saved classification model
load_clf = pickle.load(open('cycle_model.pkl', 'rb'))
# Apply model to make predictions
prediction = load_clf.predict(df)
prediction_proba = load_clf.predict_proba(df)
st.subheader('Prediction')
EstimatedDayofOvulation = np.array([17, 15, 16, 14, 18, 12, 19, 11, 13, 27, 22, 8, 20, 21, 23, 10, 26,24, 29, 9, 25, 28, 6])
st.write(EstimatedDayofOvulation[prediction])
st.subheader('Prediction Probability')
st.write(prediction_proba)