This repository has been archived by the owner on Jun 16, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathUpdatedVexbotCode.c
347 lines (289 loc) · 12.1 KB
/
UpdatedVexbotCode.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
#pragma config(I2C_Usage, I2C1, i2cSensors)
#pragma config(Sensor, in1, gyro, sensorGyro)
#pragma config(Sensor, I2C_1, , sensorQuadEncoderOnI2CPort, , AutoAssign )
#pragma config(Sensor, I2C_2, , sensorQuadEncoderOnI2CPort, , AutoAssign )
#pragma config(Sensor, I2C_3, , sensorQuadEncoderOnI2CPort, , AutoAssign )
#pragma config(Motor, port2, leftEDrive, tmotorVex393HighSpeed_MC29, PIDControl, encoderPort, I2C_2)
#pragma config(Motor, port3, leftDrive, tmotorVex393HighSpeed_MC29, openLoop, reversed)
#pragma config(Motor, port6, rightEDrive, tmotorVex393HighSpeed_MC29, PIDControl, reversed, encoderPort, I2C_3)
#pragma config(Motor, port7, rightDrive, tmotorVex393HighSpeed_MC29, openLoop)
#pragma config(Motor, port8, lift, tmotorVex393HighSpeed_MC29, openLoop, encoderPort, I2C_1)
#pragma config(Motor, port9, slaveLift, tmotorVex393HighSpeed_MC29, openLoop, reversed)
//*!!Code automatically generated by 'ROBOTC' configuration wizard !!*//
/* MOTOR LAYOUT
----------------
Port 2: Left Encoder
Port 3: Left Drive
Port 6: Right Encoder
Port 7: Right Drive
Port 8: PE A Left Lift
Port 9: PE B Right Lift
*/
//Ctrl + F "TEST" for things to check during testing.
//Global Constants
const float TICKS_PER_INCH = 28.86; //TEST
const float TICKS_PER_DEGREE = 1.5138; //Rotated 10.33 times, so average/(10.33*360)
const float INCHES_PER_TILE = 24.25; //TEST
const float TICKS_PER_TILE = 455;
const float GYRO_SCALING_FACTOR = 1.0645; //TEST
const int PID_DRIVE_MAX = 80;
const int PID_DRIVE_MIN = 20; //TEST
const int PID_ROTATE_MAX = 50;
const int PID_ROTATE_MIN = 30; //TEST
const int MIN_POWER_TO_MOVE = 25;
//Function specific constants
//MoveStraight
const float kp_wheels = -0.1489; //TEST for independant speed control. decrease if drifting to the left
const float kp_drive = 0.0159; //TEST for distance control.
//rotateEncoders
const float kp_rotate = 0.024; //TEST for rotational control.
const float kp_rotateWheels = 0.063;
//rotateGyro
const float kp_rotateGyro = 0.03;
const int threshold = 10; //Error threshold
const int driveThreshold = 20;//4
const int gyroThreshold = 20; //+- degree threshold*10;
/*---------------------------------------------------------------------------*/
/* */
/* Description: Competition template for VEX EDR */
/* */
/*---------------------------------------------------------------------------*/
// This code is for the VEX cortex platform
#pragma platform(VEX2)
// Select Download method as "competition"
#pragma competitionControl(Competition)
//Main competition background code...do not modify!
#include "Vex_Competition_Includes.c"
/*---------------------------------------------------------------------------*/
/* Pre-Autonomous Functions */
/* */
/* You may want to perform some actions before the competition starts. */
/* Do them in the following function. You must return from this function */
/* or the autonomous and usercontrol tasks will not be started. This */
/* function is only called once after the cortex has been powered on and */
/* not every time that the robot is disabled. */
/*---------------------------------------------------------------------------*/
void pre_auton()
{
// Set bStopTasksBetweenModes to false if you want to keep user created tasks
// running between Autonomous and Driver controlled modes. You will need to
// manage all user created tasks if set to false.
bStopTasksBetweenModes = true;
// Set bDisplayCompetitionStatusOnLcd to false if you don't want the LCD
// used by the competition include file, for example, you might want
// to display your team name on the LCD in this function.
// bDisplayCompetitionStatusOnLcd = false;
// All activities that occur before the competition starts
// Example: clearing encoders, setting servo positions, ...
slaveMotor(slaveLift,lift);
slaveMotor(leftDrive,leftEDrive);
slaveMotor(rightDrive,rightEDrive);
nMotorEncoder[leftEDrive]=0;
nMotorEncoder[rightEDrive]=0;
SensorType[gyro]=sensorNone;
wait1Msec(1000);
SensorType[gyro]=sensorGyro;
wait1Msec(2000);
}
void initialize(){
nMotorEncoder[leftEDrive]=0;
nMotorEncoder[rightEDrive]=0;
wait1Msec(200);
}
///* PARAMETERS
//-------------------
//i: DIRECTION. 1 is forward, -1 is backwards
//d: DISTANCE. input is in tiles, can accept decimal values, calculations for ticks is made in the function
//*/
//void moveStraight(int i, float d){
// //Variables
// float leftPower, rightPower;
// float targetTicks, distErrorL, distErrorR;
// float wheelDiff; //Keeps both sides at the same speed.
// //Clear encoder values
// initialize();
// clearTimer(T1);
// //targetTicks=d*TICKS_PER_TILE;
// targetTicks=550;
// distErrorL = targetTicks-abs(nMotorEncoder[leftEDrive]);
// distErrorR = targetTicks-abs(nMotorEncoder[rightEDrive]);
// //ACTUAL P LOOP
// //Breaks after 4 seconds or if both left and right side of drive reached the target
// while(time1[T1]<4000 && (abs(distErrorL)>threshold || abs(distErrorR)>threshold)){
// distErrorL = targetTicks-abs(nMotorEncoder[leftEDrive]);
// distErrorR = targetTicks-abs(nMotorEncoder[rightEDrive]);
// wheelDiff = abs(nMotorEncoder[leftEDrive])-abs(nMotorEncoder[rightEDrive]);
// //Proportional power gain
// leftPower=PID_DRIVE_MIN+(kp_drive*distErrorL);
// rightPower=PID_DRIVE_MIN+(kp_drive*distErrorR);
// //Keeps the left power values within the max-min range
// if(leftPower>PID_DRIVE_MAX){
// leftPower=PID_DRIVE_MAX-(wheelDiff*kp_wheels);
// } else {
// leftPower=leftPower-(wheelDiff*kp_wheels);
// }
// //Keeps the right power values within the max-min range
// if(rightPower>PID_DRIVE_MAX){
// rightPower=PID_DRIVE_MAX+(wheelDiff*kp_wheels);
// } else {
// rightPower=rightPower+(wheelDiff*kp_wheels);
// }
// motor[leftEDrive]=leftPower;
// motor[rightEDrive]=rightPower;
// wait1Msec(25); //Run at 50Hz
// }
// motor[leftEDrive]=0;
// motor[rightEDrive]=0;
//}
/* PARAMETERS
-------------------
i: DIRECTION. 1 is ccw, -1 is cw.
d: DEGREES. Self explanitory
*/
void rotateEncoders(int i, float d){
/*without internal PID ENCODER's
|LS|==> 540,550,549,539,514,546==> AVG = 539.6667
|RS|==> 541,547,546,520,532,545==> AVG = 538.5 ==> Wheel
AVG DIFFERENCE = 1.1667 TICKS*/
//Variables
float leftPower, rightPower;
float targetTicks, rotateErrorL, rotateErrorR, wheelDiff;
initialize();
clearTimer(T1);
//targetTicks=TICKS_PER_DEGREE*d;
targetTicks=1000;
rotateErrorL = targetTicks-abs(nMotorEncoder[leftEDrive]);
rotateErrorR = targetTicks-abs(nMotorEncoder[rightEDrive]);
//ACTUAL P LOOP
//Breaks after 4 seconds or if both left and right side of drive reached the target
while(time1[T1]<4000 && (abs(rotateErrorL)>threshold || abs(rotateErrorR)>threshold)){
rotateErrorL = targetTicks-abs(nMotorEncoder[leftEDrive]);
rotateErrorR = targetTicks-abs(nMotorEncoder[rightEDrive]);
wheelDiff = abs(nMotorEncoder[leftEDrive])-abs(nMotorEncoder[rightEDrive]);
//Proportional power gain, Minh added: "-(wheelDiff*kp_rotateWheels)" and "+(wheelDiff*kp_rotateWheels)" to leftPower and rightPower
leftPower=i*(PID_ROTATE_MIN+(kp_rotate*rotateErrorL)-(wheelDiff*kp_rotateWheels));
rightPower=(-i)*(PID_ROTATE_MIN+(kp_rotate*rotateErrorR)+(wheelDiff*kp_rotateWheels));//TEST figure out +- values for i corresponding to motors
//Keeps the left power values within the max-min range
if(leftPower>PID_ROTATE_MAX){
leftPower=PID_ROTATE_MAX-(wheelDiff*kp_rotateWheels);
} else {
leftPower=leftPower-(wheelDiff*kp_rotateWheels);
}
//Keeps the right power values within the max-min range
if(rightPower>PID_ROTATE_MAX){
rightPower=PID_ROTATE_MAX+(wheelDiff*kp_rotateWheels);
} else {
rightPower=rightPower+(wheelDiff*kp_rotateWheels);
}
motor[leftEDrive]=leftPower;
motor[rightEDrive]=rightPower;
wait1Msec(25); //Run at 50Hz
}
motor[leftEDrive]=0;
motor[rightEDrive]=0;
}
/* PARAMETERS
-------------------
i: DIRECTION. 1 is ccw, -1 is cw.
d: DEGREES. Self explanitory
*/
void rotateGyro(int i, float d){
//Clear Gyro
SensorValue[gyro]=0;
//Variables
float leftPower, rightPower;
float targetTicks = d*10*GYRO_SCALING_FACTOR;
float gyroError = targetTicks-abs(SensorValue[gyro]);
clearTimer(T1);
//ACTUAL P LOOP
//Breaks after 4 seconds or if both left and right side of drive reached the target
while(time1[T1]<4000 && abs(gyroError)>gyroThreshold){
gyroError=targetTicks-abs(SensorValue[gyro]);
//Proportional power gain
leftPower=i*(PID_ROTATE_MIN+(kp_rotateGyro*gyroError);
rightPower=(-i)*(PID_ROTATE_MIN+(kp_rotateGyro*gyroError);
//Keeps the left power values within the max-min range
if(leftPower>PID_ROTATE_MAX){
leftPower=PID_ROTATE_MAX;
} else {
//leftPower=leftPower-(wheelDiff*kp_rotateWheels);
}
//Keeps the right power values within the max-min range
if(rightPower>PID_ROTATE_MAX){
rightPower=PID_ROTATE_MAX
} else {
//rightPower=rightPower+(wheelDiff*kp_rotateWheels);
}
motor[leftEDrive]=leftPower;
motor[rightEDrive]=rightPower;
wait1Msec(25); //Run at 50Hz
}
motor[leftEDrive]=0;
motor[rightEDrive]=0;
}
void internalPID(int i, float d, int s){
float targetTicks=i*d*TICKS_PER_TILE;
initialize();
setMotorTarget(leftEDrive, targetTicks, s, false);
setMotorTarget(rightEDrive, targetTicks, s, false);
waitUntilMotorStop(leftEDrive);
waitUntilMotorStop(rightEDrive);
}
void turn(int i, float d, int s){
float targetTicks=i*d*TICKS_PER_DEGREE;
initialize();
setMotorTarget(leftEDrive, -targetTicks, s, false);
setMotorTarget(rightEDrive, targetTicks, s, false);
waitUntilMotorStop(leftEDrive);
waitUntilMotorStop(rightEDrive);
}
/*---------------------------------------------------------------------------*/
/* */
/* Autonomous Task */
/* */
/* This task is used to control your robot during the autonomous phase of */
/* a VEX Competition. */
/* */
/* You must modify the code to add your own robot specific commands here. */
/*---------------------------------------------------------------------------*/
task autonomous()
{
//internalPID(1,2,50);
turn(1,360,30);
wait1Msec(200);
turn(-1,360,30);
}
/*---------------------------------------------------------------------------*/
/* */
/* User Control Task */
/* */
/* This task is used to control your robot during the user control phase of */
/* a VEX Competition. */
/* */
/* You must modify the code to add your own robot specific commands here. */
/*---------------------------------------------------------------------------*/
task usercontrol()
{
initialize();
while(1){
if(abs(vexRT[Ch3])>driveThreshold){
motor[leftEDrive]=vexRT[Ch3];
} else {
motor[leftEDrive]=0;
}
if(abs(vexRT[Ch2])>driveThreshold){
motor[rightEDrive]=vexRT[Ch2];
} else {
motor[rightEDrive]=0;
}
if(vexRT[Btn6U]==1){
motor[lift]=127;
}
else if(vexRT[Btn6D]==1){
motor[lift]=-127;
}
else {
motor[lift]=0;
}
}
}