General idea:
- all objects are timeseries with annotations:
- a timeseries is a collection of snapshots, * each snapshot has a timestamp and a geometrical footprint, * plus annotations and provenance information; * a geometrical footprint can go from a point to a volume;
- use timescaledb + postgis to hold ghosts of the datasets
- single shot events are
latitude = ( 4.5217, 4.5925) longitude = (-71.7926, -71.6944) product_class = "l7" product_instance = "ledaps_meta_river" ingestion_timestamp = xxxx
- data = dc.load(latitude=latitude, longitude=longitude, product_class=,
- product_instance=, measurements = ['red', 'nir', 'pixel_qa'])
this will return a list of xarray(s)
use case sensor trace
dimensions (latitude:
with dims print( gpm_data )
<xarray.Dataset> Dimensions: (latitude: 3, longitude: 3, time: 366) Coordinates:
- time (time) datetime64[ns] 2015-01-01T11:59:59.500000 ...
- latitude (latitude) float64 12.95 12.85 12.75
- longitude (longitude) float64 14.25 14.35 14.45
- Data variables:
- total_precipitation (time, latitude, longitude) int32 0 0 0 0 0 0 0 0 ... liquid_precipitation (time, latitude, longitude) int32 0 0 0 0 0 0 0 0 ... ice_precipitation (time, latitude, longitude) int32 0 0 0 0 0 0 0 0 ... percent_liquid (time, latitude, longitude) uint8 15 15 15 15 15 ...
- Attributes:
- crs: EPSG:4326