-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathutils.py
144 lines (112 loc) · 4.8 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import os
import numpy as np
import pyfits as pf
import math
from scipy.integrate import quad
from scipy import special as sp
from scipy import interpolate
import errno
# Constants:
H0 = 72e3 # m s-1 Mpc-1
c = 299792458 # m s-1
OmegaM = 0.258
OmegaL = 0.742
# ------------------ Function definitions --------------------------------------
# Lorentzian
def lorentz(x, x_0, g, A):
return A*(g/np.pi)/((x-x_0)**2 + g**2)
# chi2 Lorentzian
def chi2Lorenz(params, xdata, ydata, ivar):
return np.sum(ivar*(ydata - lorentz(x=xdata, x_0=params[0], g=params[1], A=params[2]))**2)/(len(xdata)-len(params)-1)
# Generate a Gaussian around x_0 with amplitude A and variance var
def gauss(x, x_0, A, var):
y = A * np.exp((-(x - x_0) ** 2.0) / (2.0 * var))
return y
# Generate doublet
def gauss2(x,x1,x2,A1,A2,var):
return gauss(x,x1,A1,var) + gauss(x,x2,A2,var)
#Skew normal profile
def skew(x,A,w,a,eps):
phi = 0.5*(1+sp.erf(a*(x-eps)/(w*np.sqrt(2))))
return A*2*gauss(x,eps,1/np.sqrt(2*np.pi),w**2)*phi/w
# Skew normal doublet profile
def skew2(x,A1,w1,a1,eps1,A2,w2,a2,eps2):
return skew(x,A1,w1,a1,eps1) + skew(x,A2,a2,w2,eps2)
#Reduced Chi square for one gaussian
def chi2g(params, xdata, ydata, ivar):
return np.sum(ivar*(ydata - gauss(x=xdata, x_0=params[0], A=params[1], var=params[2]))**2)/(len(xdata)-len(params)-1)
#Reduced Chi square for Doublet
def chi2D(params, xdata, ydata, ivar):
return np.sum(ivar*(ydata - gauss(x=xdata, x_0=params[3], A=params[0], var=params[1])-gauss(x=xdata, x_0=params[4], A=params[2], var=params[1]))**2)/(len(xdata)-len(params) -1)
#Reduced Chi square for skew profile
def chi2skew(params, xdata, ydata, ivar):
return np.sum(ivar*(ydata - skew(x=xdata,A = params[0], w=params[1], a=params[2], eps = params[3]))**2)/(len(xdata)-len(params)-1)
#Reduced Chi square for double skew profile
def chi2skew2(params, xdata, ydata, ivar):
return np.sum(ivar*(ydata - skew(x=xdata,A = params[0], w=params[1], a=params[2], eps = params[3]) - skew(x=xdata, A = params[4], w = params[5], a=params[6], eps=params[7]))**2)/(len(xdata)-len(params)-1)
# Gaussian kernel used in first feature search (Bolton et al.,2004 method)
def kernel(j, width, NormGauss, length):
ker = np.zeros(length)
ker[int(j - width * 0.5):int(j + width * 0.5)] = NormGauss
return ker
#Give BOSS approximated resolution as a function of wavelength
def resolution(x):
if 4000<x<5800:
a = (2000-1400)/(5800-4000)
b = 1400-a*4000
return a*x+b
elif 5800<x<6200:
a = (1900-2000)/(6200-5800)
b = 2000-a*5800
return a*x+b
elif 6200<x<9400:
a = (2600-1900)/(9400-6200)
b = 2600-a*9400
return a*x+b
else:
return 2500
#Prepare the flux in the BOSS bins starting from MC template/any datapoints array
def template_stretch(template_x, template_y, xdata, x0,A,B,eps):
if A < 0:
A = -A
template_y = template_y[::-1]
k = max(1,int(len(template_x)/B))
step = (template_x[-1]- template_x[0])/(len(template_x)-1)
temp_x = np.linspace(template_x[0]-k*step, template_x[-1]+k*step,len(template_x)+2*k)
temp_y = temp_x*0 + 0.5*(template_y[0]+template_y[-1])
temp_y[k:-k] = template_y
template_x, template_y = temp_x, temp_y
m = np.mean(template_x)
template_x = B*(template_x -m) + m + eps
sigma = x0/resolution(x0)
gaussian_kernel = gauss(template_x,x_0=x0+eps,A=1/np.sqrt(sigma*2*np.pi),var=sigma**2)
template_y = np.convolve(template_y*A, gaussian_kernel, mode = 'same')
interpol = interpolate.interp1d(template_x,template_y, kind ='linear')
return interpol(xdata)
# Compute the chi2 any template template
def chi2template(params,xdata,ydata, template_x, template_y, x0, ivar):
y_fit = template_stretch(template_x, template_y, xdata, x0, params[0],params[1],params[2])
return np.sum(ivar*(ydata - y_fit)**2)/(len(xdata)-len(params)-1)
#Transform RA DEC to SDSS name
def SDSSname(RA,DEC):
sign = np.sign(DEC)
DEC = np.abs(DEC)
HH = math.trunc(RA//15)
MM = math.trunc((RA-HH*15.)*60./15.)
SS = round((RA-HH*15.-MM*15./60.)*3600./15,4)
SS = math.trunc(SS*100.)/100.
DD = math.trunc(DEC)
MM_dec = math.trunc((DEC-DD)*60.)
SS_dec = (DEC - DD - MM_dec/60.)*3600
SS_dec = math.trunc(SS_dec*10.)/10.
if sign < 0:
return'SDSS J'+'{:02}'.format(HH)+'{:02}'.format(MM)+'{:05.2f}'.format(SS)+'-'+'{:02}'.format(DD)+'{:02}'.format(MM_dec)+'{:04.1f}'.format(SS_dec)
else:
return 'SDSS J'+'{:02}'.format(HH)+'{:02}'.format(MM)+'{:05.2f}'.format(SS)+'+'+'{:02}'.format(DD)+'{:02}'.format(MM_dec)+'{:04.1f}'.format(SS_dec)
# Check if a path exists, if not make it
def make_sure_path_exists(path):
try:
os.makedirs(path)
except OSError as exception:
if exception.errno != errno.EEXIST:
raise