-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathlightning.py
106 lines (87 loc) · 4.01 KB
/
lightning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from pytorch_lightning.utilities.cli import LightningCLI
LightningCLI.fit = lambda x: None # temporary hack
from torchvision import datasets, transforms
from torch.optim.lr_scheduler import StepLR
from pytorch_lightning import LightningModule, LightningDataModule
from torch.utils.data import DataLoader
from pytorch_lightning.utilities.parsing import save_hyperparameters
from torchmetrics import Accuracy, MetricCollection
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 32, 3, 1)
self.conv2 = nn.Conv2d(32, 64, 3, 1)
self.dropout1 = nn.Dropout(0.25)
self.dropout2 = nn.Dropout(0.5)
self.fc1 = nn.Linear(9216, 128)
self.fc2 = nn.Linear(128, 10)
def forward(self, x):
x = self.conv1(x)
x = F.relu(x)
x = self.conv2(x)
x = F.relu(x)
x = F.max_pool2d(x, 2)
x = self.dropout1(x)
x = torch.flatten(x, 1)
x = self.fc1(x)
x = F.relu(x)
x = self.dropout2(x)
x = self.fc2(x)
output = F.log_softmax(x, dim=1)
return output
class LiftModel(LightningModule):
"""
Args:
lr: learning rate
gamma: Learning rate step gamma
"""
def __init__(self, model: nn.Module = None, lr: float = 1.0, gamma: float = 0.7):
super().__init__()
self.save_hyperparameters()
self.model = model or Net()
self.accuracy_metrics = MetricCollection({"train_acc": Accuracy(), "test_acc": Accuracy()})
def shared_step(self, batch, stage):
data, target = batch
output = self.model(data)
loss = F.nll_loss(output, target, reduction='sum')
self.log(f"{stage}_loss", loss, prog_bar=True, logger=True)
self.log(f"{stage}_acc", self.accuracy_metrics[f"{stage}_acc"](output, target), prog_bar=True, logger=True)
return loss
def training_step(self, batch, batch_idx):
return self.shared_step(batch, "train")
def test_step(self, batch, batch_idx):
self.shared_step(batch, "test")
def configure_optimizers(self):
optimizer = optim.Adadelta(self.parameters(), lr=self.hparams.lr)
scheduler = StepLR(optimizer, step_size=1, gamma=self.hparams.gamma)
return [optimizer], [scheduler]
class MnistDataModule(LightningDataModule):
"""
Args:
train_batch_size: input batch size for training
test_batch_size: input batch size for testing
num_workers: num workers to be used with the DataLoader
pin_memory: Whether to pin the tensors when running on cuda
shuffle: Whether to shuffle the training data
"""
def __init__(self, train_batch_size: int = 64, test_batch_size: int = 1000, num_workers: int = 1, pin_memory: bool = True, shuffle: bool = True):
super().__init__()
save_hyperparameters(self)
self.transforms = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])
def train_dataloader(self):
train_ds = datasets.MNIST('data', train=True, download=True, transform=self.transforms)
return DataLoader(train_ds, batch_size=self.hparams.train_batch_size, shuffle=self.hparams.shuffle, pin_memory=self.hparams.pin_memory, num_workers=self.hparams.num_workers)
def test_dataloader(self):
test_ds = datasets.MNIST('data', train=False, download=True, transform=self.transforms)
return DataLoader(test_ds, batch_size=self.hparams.test_batch_size, shuffle=False, pin_memory=self.hparams.pin_memory, num_workers=self.hparams.num_workers)
def main():
cli = LightningCLI(LiftModel, MnistDataModule, trainer_defaults=dict(max_epochs=14, gpus=int(torch.cuda.is_available())), save_config_overwrite=True, save_config_callback=None)
cli.trainer.fit(cli.model, datamodule=cli.datamodule)
cli.trainer.test(datamodule=cli.datamodule)
cli.trainer.save_checkpoint("mnist_cnn.pt")
if __name__ == '__main__':
main()