-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
257 lines (233 loc) · 7.76 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
"""Main training script. Mind that wandb config has to be added manually."""
import wandb
import argparse
import tensorflow as tf
from wandb.keras import WandbCallback
import tensorflow_addons as tfa
import models
import dataloaders
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Age recognition training script.")
group = parser.add_mutually_exclusive_group()
group.add_argument(
"img_folder_path",
type=str,
help="Path to folder with images grouped into classes.",
)
group.add_argument(
"tfr_folder_path", type=str, help="Path to folder with TFRecord files."
)
parser.add_argument(
"model", type=str, help="Model to use. Avaliable are cnn and cnn_vit."
)
parser.add_argument(
"batch_size", type=int, help="Size of input batch for the model."
)
parser.add_argument(
"n_classes", type=int, help="Number of classes being classified."
)
parser.add_argument(
"epochs", type=int, help="Number of epochs to run training for."
)
parser.add_argument("img_w", type=int, help="Input image width.")
parser.add_argument("img_h", type=int, help="Input image height.")
parser.add_argument("--lr", type=float, default=0.001, help="Learning rate.")
parser.add_argument(
"--w_decay",
type=float,
default=0.001,
help="Weight decay value for AdamW optimizer.",
)
parser.add_argument(
"--val_split",
type=float,
default=0.2,
help="Percentage of training data to use for validation.",
)
parser.add_argument(
"--one_hot",
type=bool,
default=True,
help="Wheather to use one hot label encoding in datasets.",
)
parser.add_argument(
"--shuffle",
type=bool,
default=True,
help="Wheather to shuffle files in training dataset.",
)
parser.add_argument(
"--seed", type=int, help="Random seed value for pseudo-random operations."
)
parser.add_argument(
"--proj_dim",
type=int,
default=64,
help="Embedding size for cnn_vit model. Has no effect if model is cnn only.",
)
parser.add_argument(
"--n_heads",
type=int,
default=6,
help="Number of self-attention heads in cnn_vit model. Has no effect if model is cnn only.",
)
parser.add_argument(
"--transformer_layers",
type=int,
default=6,
help="Number of attention layers in cnn_vit model. Has no effect if model is cnn only.",
)
parser.add_argument(
"--mlp_units",
type=tuple[int, int],
default=[2048, 1024],
help="Number of neurons in dense layers in MLP layer of cnn_vit model. Has no effect if model is cnn only.",
)
parser.add_argument(
"--finetune",
type=bool,
default=False,
help="Wheather to unfreeze model backbone after initial training and perform another round of training.",
)
parser.add_argument(
"--finetune_lr",
type=float,
default=0.00001,
help="Learning rate to use during finetuning.",
)
parser.add_argument(
"--finetune_w_decay",
type=float,
default=0.001,
help="Weight decay to use during finetuning.",
)
args = parser.parse_args()
if args.seed:
tf.random.set_seed(args.seed)
physical_devices = tf.config.list_physical_devices("GPU")
for device in physical_devices:
tf.config.experimental.set_memory_growth(device, True)
strategy = tf.distribute.MirroredStrategy()
AUTOTUNE = tf.data.AUTOTUNE
INPUT_SHAPE = (args.img_w, args.img_h, 3)
## define your own logging names for Wandb
CONFIG = dict(
seed=args.seed,
img_size=INPUT_SHAPE,
num_classes=args.n_classes,
num_epochs=args.epochs,
batch_size=args.batch_size,
learning_rate=args.lr,
)
wandb.init(
project="my_proj",
group="my_group",
name="my_name",
job_type="my_job",
config=CONFIG,
)
if args.img_folder_path is not None:
train_ds, valid_ds, test_ds = dataloaders.create_image_dataset(
dirpath=args.img_folder_path,
batch_size=args.batch_size,
img_w=INPUT_SHAPE[0],
img_h=INPUT_SHAPE[1],
val_split=args.val_split,
one_hot=args.one_hot,
shuffle=args.shuffle,
seed=args.seed,
)
elif args.tfr_folder_path is not None:
train_ds, valid_ds, test_ds = dataloaders.create_tfr_dataset(
dirpath=args.tfr_folder_path,
batch_size=args.batch_size,
img_w=INPUT_SHAPE[0],
img_h=INPUT_SHAPE[1],
val_split=args.val_split,
one_hot=args.one_hot,
shuffle=args.shuffle,
seed=args.seed,
num_classes=args.n_classes,
)
with strategy.scope():
adamw = tfa.optimizers.AdamW(
learning_rate=args.lr,
weight_decay=args.w_decay,
)
optimizer = adamw
if args.model == "cnn":
model_age = models.create_cnn_network(
input_shape=INPUT_SHAPE, num_classes=args.n_classes
)
elif args.model == "cnn_vit":
model_age = models.create_cnn_vit_network(
input_shape=INPUT_SHAPE,
num_classes=args.n_classes,
projection_dim=args.proj_dim,
transformer_layers=args.transformer_layers,
num_heads=args.n_heads,
mlp_head_units=args.mlp_units,
)
else:
print("Invalid model name specified!")
model_age.compile(
optimizer=optimizer,
loss=tf.keras.losses.CategoricalCrossentropy(),
metrics=[
tf.keras.metrics.CategoricalAccuracy(),
tfa.metrics.CohenKappa(args.n_classes),
tf.keras.metrics.Precision(),
tf.keras.metrics.Recall(),
tfa.metrics.F1Score(args.n_classes),
],
)
early_stop = tf.keras.callbacks.EarlyStopping(
monitor="val_loss",
patience=5,
mode="min",
restore_best_weights=True,
)
history = model_age.fit(
train_ds,
validation_data=valid_ds,
epochs=args.epochs,
callbacks=[WandbCallback(), early_stop],
)
if args.finetune:
with strategy.scope():
adamw = tfa.optimizers.AdamW(
learning_rate=args.finetune_lr,
weight_decay=args.finetune_w_decay,
)
optimizer = adamw
model_age.trainable = True
model_age.compile(
optimizer=optimizer,
loss=tf.keras.losses.CategoricalCrossentropy(),
metrics=[
tf.keras.metrics.CategoricalAccuracy(),
tfa.metrics.CohenKappa(args.n_classes),
tf.keras.metrics.Precision(),
tf.keras.metrics.Recall(),
tfa.metrics.F1Score(args.n_classes),
],
)
early_stop = tf.keras.callbacks.EarlyStopping(
monitor="val_loss",
patience=5,
mode="min",
restore_best_weights=True,
)
history = model_age.fit(
train_ds,
validation_data=valid_ds,
epochs=args.epochs,
callbacks=[WandbCallback(), early_stop],
)
model_age.save("my_model")
print("Test dataset evaluation:")
eval_test = model_age.evaluate(train_ds)
print("Valid dataset evaluation:")
eval_valid = model_age.evaluate(valid_ds)
print("Train dataset evaluation:")
eval_train = model_age.evaluate(test_ds)