-
Notifications
You must be signed in to change notification settings - Fork 35
/
Copy pathalign.py
69 lines (58 loc) · 1.86 KB
/
align.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
import os
import sys
import associate
import numpy as np
def align(model, data):
"""Align two trajectories using the method of Horn (closed-form).
Input:
model -- first trajectory (3xn)
data -- second trajectory (3xn)
Output:
rot -- rotation matrix (3x3)
trans -- translation vector (3x1)
trans_error -- translational error per point (1xn)
"""
np.set_printoptions(precision=3,suppress=True)
model_zerocentered = model - model.mean(1)
data_zerocentered = data - data.mean(1)
W = np.zeros( (3,3) )
for column in range(model.shape[1]):
W += np.outer(model_zerocentered[:,column],data_zerocentered[:,column])
U,d,Vh = np.linalg.linalg.svd(W.transpose())
S = np.matrix(np.identity( 3 ))
if(np.linalg.det(U) * np.linalg.det(Vh)<0):
S[2,2] = -1
rot = U*S*Vh
trans = data.mean(1) - rot * model.mean(1)
model_aligned = rot * model + trans
alignment_error = model_aligned - data
trans_error = np.sqrt(np.sum(np.multiply(alignment_error,alignment_error),0)).A[0]
return rot,trans,trans_error
def plot_traj(ax,stamps,traj,style,color,label):
"""
Plot a trajectory using matplotlib.
Input:
ax -- the plot
stamps -- time stamps (1xn)
traj -- trajectory (3xn)
style -- line style
color -- line color
label -- plot legend
"""
stamps.sort()
interval = np.median([s-t for s,t in zip(stamps[1:],stamps[:-1])])
x = []
y = []
last = stamps[0]
for i in range(len(stamps)):
if stamps[i]-last < 2*interval:
x.append(traj[i][0])
y.append(traj[i][1])
elif len(x)>0:
ax.plot(x,y,style,color=color,label=label)
label=""
x=[]
y=[]
last= stamps[i]
if len(x)>0:
ax.plot(x,y,style,color=color,label=label)