forked from ixxmu/scRNA-AHCA
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTCR_analysis.R
375 lines (311 loc) · 19.7 KB
/
TCR_analysis.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
##---------------Take CD8 T cell for an example.--------------########
library(Seurat)
library(ggpubr)
library(plyr)
library(dplyr)
library(stringr)
library(ggthemes)
library(cowplot)
library(data.table)
library(RColorBrewer)
library(pheatmap)
library(tidyr)
library(Startrac)
library(ggplot2)
library(ggsci)
library(igraph)
tissues_colors <- c( "Common.bile.duct" = '#1f77b4',
Bladder = '#aec7e8',
Blood = '#ff7f0e',
Esophagus = '#ffbb78',
Heart = '#2ca02c',
Kidney = '#98df8a',
Rectum = '#d62728',
Liver = '#9edae5',
Lung = '#ff9896',
"Lymph.node" = '#9467bd',
Marrow = '#c5b0d5',
Muscle = '#8c564b',
Pancreas = '#c49c94',
Skin = '#e377c2',
"Small.intestine" = '#f7b6d2',
Spleen = '#7f7f7f',
Stomach = '#c7c7c7',
Testis = '#17becf',
Trachea = '#d62790'
)
tissus_to_numbers <- c( "Common.bile.duct" = 1,
Bladder = 1,
Blood = 1,
Esophagus = 1,
Heart = 1,
Kidney = 3,
Rectum = 1,
Liver = 1,
Lung = 2,
"Lymph.node" = 1,
Marrow = 1,
Muscle = 1,
Pancreas = 2,
Skin = 1,
"Small.intestine" = 1,
Spleen = 1,
Stomach = 1,
Testis = 1,
Trachea = 1
)
##----------------------------------Step 1. Identify T cell with paired A and B chains.-------------------------------####
number_to_tissue <- read.table("number_corresponding_tissue_TCR.txt", header = F, col.names = c("Number", "Tissue"), stringsAsFactors = F)
T_cells_meta.data <- read.table("CD8_meta.data.csv", header = T, row.names = 1, sep = "\t", stringsAsFactors = F, comment.char = "")
#################
T_cell_clone_orig <- read.table("filtered_contig_annotations_T.csv", sep = ",", header = T, stringsAsFactors = F)
number_cor_tissue_T_TCR <- str_split(T_cell_clone_orig$barcode, pattern = "-", simplify = T)
number_cor_tissue_T_TCR[, 2] <- mapvalues(number_cor_tissue_T_TCR[, 2], from = number_to_tissue$Number, to = number_to_tissue$Tissue )
T_cell_clone_orig$Tissue <- number_cor_tissue_T_TCR[, 2]
T_cell_clone_orig$Barcode <- number_cor_tissue_T_TCR[, 1]
T_cell_clone_orig$cell_barcode <- (with(T_cell_clone_orig, paste0(Tissue, "_cDNA_", Barcode)))
################
T_cell_clone <- read.table("filtered_contig_annotations_T.csv", sep = ",", header = T, stringsAsFactors = F)
###-------------------remove the cells with only one chain---------#################
multiple_chains <- T_cell_clone[duplicated(T_cell_clone$barcode), ] %>% `[`(, 1) %>% unique()
T_cell_clone <- T_cell_clone[T_cell_clone$barcode %in% multiple_chains, ]
###-------------------transform the barcode of cells---------------#################
number_cor_tissue_T <- str_split(T_cell_clone$barcode, pattern = "-", simplify = T)
number_cor_tissue_T[, 2] <- mapvalues(number_cor_tissue_T[, 2], from = number_to_tissue$Number, to = number_to_tissue$Tissue )
T_cell_clone$Tissue <- number_cor_tissue_T[, 2]
T_cell_clone$Barcode <- number_cor_tissue_T[, 1]
T_cell_clone$cell_barcode <- (with(T_cell_clone, paste0(Tissue, "_cDNA_", Barcode)))
###--------------------remove contaminated cells with BCR,D&G T cells, raw_clonetype_id None, cdr3 None, productive None--------------------------------------#######################
contamination_cells_T <- unique(T_cell_clone[(grepl(pattern = "IG|Multi|TRD|TRG",
x = with(T_cell_clone, paste0(chain, v_gene, d_gene, j_gene, c_gene)))),
"cell_barcode"]) ## remove contaminated cells with BCR,D&G T cells
T_cell_clone <- T_cell_clone[!(T_cell_clone$cell_barcode %in% contamination_cells_T), ] ## remove contaminated cells
T_cell_clone_none_rm <- T_cell_clone[!T_cell_clone$raw_clonotype_id == "None", ] ## remove raw_clonotype_id None
T_cell_clone_none_rm <- T_cell_clone_none_rm[!T_cell_clone_none_rm$cdr3 == "None", ] ## remove the cdr3 None
T_cell_clone_none_rm <- T_cell_clone_none_rm[!T_cell_clone_none_rm$productive == "False", ] ## remove the productive False
###-------------------remove the cells with only one chain---------#################
multiple_chains <- T_cell_clone_none_rm[duplicated(T_cell_clone_none_rm$barcode), ] %>% `[`(, 1) %>% unique()
T_cell_clone <- T_cell_clone_none_rm[T_cell_clone_none_rm$barcode %in% multiple_chains, ]
T_cell_clone_uniq <- T_cell_clone
###--------------------remove T cells only with A or B chain---------------------------------#############
barcodes_cells <- unique(T_cell_clone_uniq$cell_barcode)
qualited_T_cells <- lapply(barcodes_cells, FUN = function(x){
tmp <- T_cell_clone[T_cell_clone_uniq$cell_barcode %in% x, "chain"] %>% unlist
if(all("TRA" %in% tmp, "TRB" %in% tmp)){
return(x)
}
}) %>% do.call(rbind, .)
####----------the result of this step (T_cell_clone_uniq) was used as the input to identify sharing weight.------------######
T_cell_clone_uniq <- T_cell_clone_uniq[T_cell_clone_uniq$cell_barcode %in% qualited_T_cells, ]
#########################################################################################################
###------------------remove non T cells TCR----------------------------#####################
T_cell_clone_uniq <- filter(T_cell_clone_uniq, cell_barcode %in% row.names(T_cells_meta.data)) ## 5560 T cells (2402 clones) with certain clone type and paired A and B chain
T_cell_clone_uniq$annotation <- mapvalues(T_cell_clone_uniq$cell_barcode,
from = T_cells_meta.data %>% row.names,
to = T_cells_meta.data$annotation)
##--------------------------------------------------Step 2. TCR sharing across organs.--------------------------------####
##remove none clone cells
T_cell_clone_uniq_each <- T_cell_clone_uniq[ !duplicated(T_cell_clone_uniq$"cell_barcode"), ]
duplicated_clones <- names(table(T_cell_clone_uniq_each$raw_clonotype_id)[unname(table(T_cell_clone_uniq_each$raw_clonotype_id))>= 2])
T_cell_clone_uniq <- T_cell_clone_uniq[T_cell_clone_uniq$raw_clonotype_id %in% duplicated_clones, ] ## 438 cells, 106 clones
T_cell_clone_uniq_sorted <- T_cell_clone_uniq %>% arrange(Tissue, raw_clonotype_id, Barcode) %>% dplyr::select(Barcode, raw_clonotype_id, Tissue)
T_cell_clone_uniq_sorted_h_2_low <- with(T_cell_clone_uniq_sorted,
lapply(unique(Tissue), function(x, dat){
ord <- match(dat[dat$Tissue == x, "raw_clonotype_id"],
names(sort(table(dat[dat$Tissue == x, "raw_clonotype_id"]), decreasing = T)))
each_ordered <- dat[dat$Tissue == x, ][order(ord), ]
}, dat = T_cell_clone_uniq_sorted))
T_cell_clone_sort_h_2_l <- do.call(rbind, T_cell_clone_uniq_sorted_h_2_low)
matrix_cor_expression <- with(T_cell_clone_sort_h_2_l, lapply(1:dim(T_cell_clone_sort_h_2_l)[1],
function(x){(raw_clonotype_id %in% raw_clonotype_id[x])+0 }))
Cor_T_matrix <- do.call(cbind, matrix_cor_expression)
row.names(Cor_T_matrix) <- T_cell_clone_sort_h_2_l$Tissue
colnames(Cor_T_matrix) <- T_cell_clone_sort_h_2_l$Tissue
shared_matrix <- unclass(with(T_cell_clone_sort_h_2_l,table(raw_clonotype_id, Tissue)))
shared_matrix[ shared_matrix > 0 ] <- 1
shared_m <- t(shared_matrix) %*% (shared_matrix)
cluster.gr <- igraph::graph_from_adjacency_matrix(shared_m/sum(shared_m),
mode="undirected", weighted=TRUE, diag=FALSE)
##------------------3. calculate the sharing weight (TCR tracking analysis across organs)----------------###
TCR <- T_cell_clone_uniq %>% ### the input "T_cell_clone_uniq" was generated from step 1 above.
select(c(cell_barcode, raw_clonotype_id, Tissue)) %>%
mutate(patient = mapvalues(Tissue, from = names(tissus_to_numbers), to = unname(tissus_to_numbers)), loc = Tissue) %>%
setnames(old = c("cell_barcode", "raw_clonotype_id", "Tissue"), new = c("Cell_Name", "clone.id", "majorCluster"))
obj <- new("Startrac", TCR, aid = "HCA")
obj <- calIndex(obj)
# tic("pIndex")
obj <- pIndex(obj)
[email protected][is.na([email protected])] <- 0
migration_across_tissue <- [email protected] %>% select(-c(1:2))
row.names(migration_across_tissue) <- colnames(migration_across_tissue)
pheatmap::pheatmap(migration_across_tissue)
uppertri <- migration_across_tissue
uppertri[!upper.tri(uppertri)] <- 10
uppertri <- as.matrix(uppertri)
tmp <- as.vector(t(uppertri))
weight <- tmp[!((tmp == 10)|(tmp == 0)) ]
#########----------------------------4. ploting the TCR sharing across organs-----------------------------------------------------##
E(cluster.gr)$weight <- weight
E(cluster.gr)$width <- E(cluster.gr)$weight/6
E(cluster.gr)$width <- 1+E(cluster.gr)$weight/8
V(cluster.gr)$size <- c(T_cell_clone_uniq[ !duplicated(T_cell_clone_uniq$"cell_barcode"), ]$Tissue %>% table()) %>% log2
V(cluster.gr)$frame.color <- unname(tissues_colors)[match(x = names(V(cluster.gr)), table = names(tissues_colors))]
pdf("Tissue_TCR_sharing_network_CD8.pdf", height = 10, width = 10)
set.seed(2)
pt <- plot(cluster.gr,
edge.width = igraph::E(cluster.gr)$weight*20,
vertex.color = unname(tissues_colors)[match(x = names(V(cluster.gr)), table = names(tissues_colors))],
vertex.label.dist = 0,
vertex.label.color = unname(tissues_colors)[match(x = names(V(cluster.gr)), table = names(tissues_colors))],
vertex.label.cex = 1,
layout = layout_in_circle(cluster.gr))
dev.off()
#####-----------------------------------------5. TCR tracking analysis across subclusters--------------------------------##
TCR <- T_cell_clone_uniq %>% ### the input "T_cell_clone_uniq" was generated from step 1 above.
select(c(cell_barcode, raw_clonotype_id, Tissue)) %>%
mutate(patient = Tissue, loc = Tissue,
Tissue = mapvalues(cell_barcode, from = row.names(T_cells_meta.data), to = T_cells_meta.data$annotation) ) %>%
setnames(old = c("cell_barcode", "raw_clonotype_id", "Tissue"), new = c("Cell_Name", "clone.id", "majorCluster"))
obj <- new("Startrac", TCR, aid = "HCA")
obj <- calIndex(obj)
obj <- pIndex(obj)
[email protected][is.na([email protected])] <- 0
migration_across_tissue <- [email protected] %>% select(-c(1:2))
row.names(migration_across_tissue) <- colnames(migration_across_tissue)
pdf("heatmap_transition_across_clusters_CD8.pdf", width = 15, height = 15)
pheatmap::pheatmap(migration_across_tissue,
# color = colorRampPalette(c("navy", "white", "firebrick3"))(100),
# breaks = seq(0, 1, length.out = 100),
treeheight_row = 8,
treeheight_col = 8,
border_color = "white",
# cellwidth = 20,
# cellheight = 5,
scale = "none",
cluster_rows = T,
cluster_cols = T,
fontsize_row = 5,
fontsize_col = 5,
# annotation_col = annotation_cols,
# annotation_colors = ann_colors,
show_colnames = T,
width = 10,
height = 14
)
dev.off()
###-----------------------------6. distribution of T clonetyps across organs------------------##
TCR_clone_dat <- T_cell_clone_uniq %>% ### the input "T_cell_clone_uniq" was generated from step 1 above.
select(c(Tissue, cell_barcode, raw_clonotype_id)) %>%
mutate(cluster = mapvalues(cell_barcode, from = row.names(T_cells_meta.data), to = T_cells_meta.data$annotation) ) %>% unique
group_by_tissue <- by(TCR_clone_dat, TCR_clone_dat$Tissue, FUN = function(x) { `[`(x) })
result <- lapply(1:length(group_by_tissue), FUN = function(x, dat) {
clone_number <- split(1:(dim(dat[[x]])[1]), dat[[x]]$raw_clonotype_id) %>%
lapply(FUN = length) %>%
do.call(what = rbind) %>%
as.data.frame()
clone_number[clone_number$V1 >= 3, ] <- 3
dat[[x]]$clone_numbers <- mapvalues(dat[[x]]$raw_clonotype_id, from = row.names(clone_number), to = clone_number$V1)
return(dat[[x]])
}, dat = group_by_tissue)
results <- do.call(result, what = rbind)
results$clone_numbers <- factor(results$clone_numbers, levels = c(3, 2, 1))
pdf("TCR_clone_structures_across_tissue_CD8.pdf", width = 15, height = 7)
ggplot(results, aes(x = Tissue, fill = clone_numbers)) +
geom_bar(stat = "count") +
theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust = 1)) +
scale_y_continuous(expand = c(0.005, 0.1)) +
scale_fill_discrete(name = "Clonality", labels = c("Clonal", "Duplicated", "Unique"))
dev.off()
###-----------------------------7. distribution of T clonetyps across clusters------------------###
TCR_clone_dat <- T_cell_clone_uniq %>% ### the input "T_cell_clone_uniq" was generated from step 1 above.
select(c(Tissue, cell_barcode, raw_clonotype_id)) %>%
mutate(cluster = mapvalues(cell_barcode, from = row.names(T_cells_meta.data), to = T_cells_meta.data$T_subtype) ) %>% unique
group_by_tissue <- by(TCR_clone_dat, TCR_clone_dat$cluster, FUN = function(x) { `[`(x) })
result <- lapply(1:length(group_by_tissue), FUN = function(x, dat) {
clone_number <- split(1:(dim(dat[[x]])[1]), dat[[x]]$raw_clonotype_id) %>%
lapply(FUN = length) %>%
do.call(what = rbind) %>%
as.data.frame()
clone_number[clone_number$V1 >= 3, ] <- 3
dat[[x]]$clone_numbers <- mapvalues(dat[[x]]$raw_clonotype_id, from = row.names(clone_number), to = clone_number$V1)
return(dat[[x]])
}, dat = group_by_tissue)
results <- do.call(result, what = rbind)
results$clone_numbers <- factor(results$clone_numbers, levels = c(3, 2, 1))
results$cluster <- factor(results$cluster, levels = c('TN_SELL',
'TN_KLF2',
'TCM_LEF1',
'TCM_GADD45B',
'TEM_INFG',
'TEM_GZMK',
'TEM_GIMAP4',
'TEFF_TRBV4-2',
'TEFF_MT1E',
'TEFF_GNLY',
'TRM_HSPA1A',
'TRM_H2AFZ',
'TRM_GZMB',
'TRM_PRR4',
'TRM_RGS1',
'TRM_MT1X',
'TRM_NABP1',
'TRM_TYMS',
'IEL_TMIGD2',
'IEL_TRBV7-3',
'MAIT_SLC4A10'
))
pdf("TCR_clone_structures_across_clusters_CD8.pdf", width = 15, height = 7)
ggplot(results, aes(x = cluster, fill = clone_numbers)) +
geom_bar(stat = "count") +
theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust = 1)) +
scale_y_continuous(expand = c(0.005, 0.1)) +
scale_fill_discrete(name = "Clonality", labels = c("Clonal", "Duplicated", "Unique"))
dev.off()
#########------------------------8. TCR sharing across organs and clusters -----------------------------------------############
metdata <- T_cells_meta.data ## T_cell_clone_uniq: the input "T_cell_clone_uniq" was generated from step 1 above.
T_cell_clone_uniq <- T_cell_clone_uniq %>% subset(!(annotation %in% grep(T_cell_clone_uniq$annotation, pattern = "TGD", value = T)))
clo_cells <- T_cell_clone_uniq$cell_barcode
clone_metdat <- metdata[row.names(metdata) %in% clo_cells, ]
clone_metdat$raw_clonotype_id <- mapvalues(rownames(clone_metdat), from = T_cell_clone_uniq$cell_barcode, to = T_cell_clone_uniq$raw_clonotype_id)
size_of_col_type <- sort(table(clone_metdat %>% subset$raw_clonotype_id), decreasing = T)
dat_to_plot <- clone_metdat[ ,c("orig.ident", "annotation", "raw_clonotype_id", "Color_of_tissues")]
clone_tissue <- unclass(t(table(dat_to_plot[, c(1, 3)])))
shared_clone_frequence <- lapply(1:(dim(clone_tissue)[1]), FUN = function(x) {result <- table(as.numeric(clone_tissue[x, ]) > 0)[2]})
shared_clone_frequences <- do.call(rbind, shared_clone_frequence)
row.names(shared_clone_frequences) <- row.names(clone_tissue)
shared_clone_frequences <- data.frame(clones = row.names(shared_clone_frequences), Freq = unname(shared_clone_frequences))
shared_clone_frequences <- shared_clone_frequences[order(shared_clone_frequences$Freq, decreasing = T), ]
dat <- data.frame(table(dat_to_plot[, c(1:3)]))
dat <- dat[!(dat$orig.ident == "Testis"), ]
col_fre_larger_than_x <- shared_clone_frequences[shared_clone_frequences$Freq >= 8, "clones"]
dat1 <- dat[dat$raw_clonotype_id %in% col_fre_larger_than_x, ]
dat1$cols_of_tissue <- mapvalues(as.character(dat1$orig.ident),
from = unique(as.character(clone_metdat$orig.ident)),
to = unique(as.character(clone_metdat$Color_of_tissues) ))
dat1$raw_clonotype_id <- factor(as.character(dat1$raw_clonotype_id),
levels = names(size_of_col_type)[sort(match(x = unique(as.character(dat1$raw_clonotype_id)),
table = names(size_of_col_type)), decreasing = F)])
###---order the tissues
order_of_tissues <- dat1 %>% subset(Freq > 0) %>% group_by(orig.ident) %>% dplyr::summarise(., total = sum(Freq))
order_of_tissues <- order_of_tissues[order(order_of_tissues$total, decreasing = T), ] %>% `[`(1) %>% unlist %>% as.character
dat1 <- dat1 %>% subset(orig.ident %in% order_of_tissues)
dat1$orig.ident <- factor(dat1$orig.ident %>% as.character, levels = order_of_tissues)
###---order the Clusters
order_of_clusters <- dat1 %>% subset(Freq > 0) %>% group_by(annotation) %>% dplyr::summarise(., total = sum(Freq))
order_of_clusters <- order_of_clusters[order(order_of_clusters$total, decreasing = T), ] %>% `[`(1) %>% unlist %>% as.character
dat1 <- dat1 %>% subset(annotation %in% order_of_clusters)
dat1$annotation <- factor(dat1$annotation %>% as.character, levels = order_of_clusters)
png("TCR_share_across_organs_and_cell_types_CD8_with_legend.png", width = 20, height = 20, res = 500, units = "in")
ggplot(data = dat1[, ],
aes(axis1 = raw_clonotype_id, axis2 = orig.ident, axis3 = annotation, y = Freq)) +
scale_x_discrete(limits = c("raw_clonotype_id", "orig.ident", "annotation"), expand = c(.1, .05)) +
xlab("Demographic") +
geom_alluvium(aes(fill = orig.ident)) +
geom_stratum() +
geom_text(stat = "stratum", label.strata = T, check_overlap = T, size = 6) +
theme_minimal() +
# scale_fill_manual(values = as.character(unique(dat1$cols_to_use)[match(x = levels(dat1$T_subtype), table = unique(dat1$T_subtype))])) +
scale_fill_manual(values = c(tissues_colors[match(levels(dat1$orig.ident), tissues_colors %>% names)]) %>% unname) +
ggtitle("TCR_share_across_organs_and_cell_types") +
theme(legend.position = "none")
dev.off()