-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtransformer.py
125 lines (103 loc) · 3.95 KB
/
transformer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import torch
import torch.nn as nn
from torch.nn import functional as F
dropout = 0.0
n_embed = 64
n_heads = 4
block_size = 32
batch_size = 16
n_layers = 4
class Head(nn.Module):
def __init__(self,head_size):
super().__init__()
self.key = nn.Linear(n_embed,head_size,bias=False)
self.query = nn.Linear(n_embed,head_size,bias=False)
self.value = nn.Linear(n_embed,head_size,bias=False)
self.register_buffer('tril',torch.tril(torch.ones(block_size,block_size)))
self.dropout = nn.Dropout(dropout)
def forward(self,x):
B,T,C = x.shape # C is the size of the embedding of a given token
k = self.key(x)
q = self.query(x)
v = self.value(x)
weights = q @ k.transpose(-2,-1) * C**-0.5 # B*T*C x B*C*T -> B*T*T
weights = weights.masked_fill(self.tril[:T,:T] == 0,float('-inf'))
weights = F.softmax(weights,dim=-1)
weights = self.dropout(weights)
out = weights @ v
return out
class MultiHeadAttention(nn.Module):
def __init__(self,num_heads,head_size):
super().__init__()
self.heads = nn.ModuleList([Head(head_size) for _ in range(num_heads)])
self.proj = nn.Linear(n_embed,n_embed)
self.dropout = nn.Dropout(dropout)
def forward(self,x):
out = torch.cat([h(x) for h in self.heads],dim=-1)
out = self.proj(out)
out = self.dropout(out)
return out
class FeedForward(nn.Module):
def __init__(self):
super().__init__()
self.net = nn.Sequential(
nn.Linear(n_embed,4*n_embed),
nn.ReLU(),
nn.Linear(4*n_embed,n_embed),
nn.Dropout(dropout),
)
def forward(self,x):
return self.net(x)
class Block(nn.Module):
def __init__(self):
super().__init__()
head_size = n_embed // n_heads
self.sa = MultiHeadAttention(n_heads,head_size)
self.ffw = FeedForward()
self.ln1 = nn.LayerNorm(n_embed)
self.ln2 = nn.LayerNorm(n_embed)
def forward(self,x):
x = x+self.sa(self.ln1(x))
x = x + self.ffw(self.ln2(x))
return x
class TransformerModel(nn.Module):
def __init__(self,vocab_size,device):
super().__init__()
self.device = device
self.token_embedding_table = nn.Embedding(vocab_size,n_embed)
self.position_embedding_table = nn.Embedding(block_size,n_embed)
self.blocks = nn.Sequential(*[Block() for _ in range(n_layers)])
self.ln_f = nn.LayerNorm(n_embed)
self.lm_head = nn.Linear(n_embed,vocab_size)
def forward(self,idx,targets=None):
B,T = idx.shape
tok_emb = self.token_embedding_table(idx) # BTC
pos_emb = self.position_embedding_table(torch.arange(T,device=self.device))
x = tok_emb + pos_emb
x = self.blocks(x)
x = self.ln_f(x)
logits = self.lm_head(x) # B,T,vocab_size
if targets is None:
loss = None
else:
B,T,C = logits.shape
logits = logits.view(B*T, C)
targets = targets.view(B*T)
loss = F.cross_entropy(logits, targets)
return logits,loss
def generate(self, idx, max_new_tokens):
# idx is (B, T) array of indices in the current context
for _ in range(max_new_tokens):
# crop idx to the last block_size tokens
idx_cond = idx[:, -block_size:]
# get the predictions
logits, loss = self(idx_cond)
# focus only on the last time step
logits = logits[:, -1, :] # becomes (B, C)
# apply softmax to get probabilities
probs = F.softmax(logits, dim=-1) # (B, C)
# sample from the distribution
idx_next = torch.multinomial(probs, num_samples=1) # (B, 1)
# append sampled index to the running sequence
idx = torch.cat((idx, idx_next), dim=1) # (B, T+1)
return idx