-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathutils.py
163 lines (137 loc) · 6.07 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import torch
import random
import numpy as np
import copy
from collections import OrderedDict
import os
def remove_module(state_dict):
new_state_dict = OrderedDict()
for k, v in state_dict.items():
if k[:7] == 'module.':
name = k[7:] # remove `module.`
else:
name = k
new_state_dict[name] = v
return new_state_dict
def set_seed(seed):
torch.manual_seed(seed)
random.seed(seed)
np.random.seed(seed)
def filter_bbs(bb_coordinates, gt):
bb_list = []
for bb in bb_coordinates:
if bb[0] == gt:
bb_list.append(bb[1:])
return bb_list
class BestMetricTracker:
def __init__(self, metric_name):
super().__init__()
self.metric_name = metric_name
self.best_model_dict = None
self.best_epoch = None
self.best_metrics = None
self.initialized = False
def update_values(self, metric_dict, model, epoch):
self.best_model_dict = copy.deepcopy(model.state_dict())
self.best_metrics = copy.deepcopy(metric_dict)
self.best_epoch = epoch
def update(self, metric_dict, model, epoch):
if not self.initialized:
self.update_values(metric_dict, model, epoch)
self.initialized = True
elif self.best_metrics[self.metric_name] < metric_dict[self.metric_name]:
self.update_values(metric_dict, model, epoch)
def get_best(self):
if not self.initialized:
return None, None, None, None
return self.best_metrics[self.metric_name], self.best_model_dict, self.best_epoch, self.best_metrics
def get_random_optimization_targets(targets):
probabilities = targets/targets.sum(dim=1, keepdim=True).detach()
return probabilities.multinomial(num_samples=1).squeeze(1)
class ParetoFrontModels:
def __init__(self, bin_width=0.005):
super().__init__()
self.bin_width = bin_width
self.pareto_checkpoints = []
self.pareto_costs = []
def update(self, model, metric_dict, epoch):
metric_vals = copy.deepcopy(metric_dict)
state_dict = copy.deepcopy(model.state_dict())
metric_vals.update({"model": state_dict, "epochs": epoch+1})
self.pareto_checkpoints.append(metric_vals)
self.pareto_costs.append(
[metric_vals["F-Score"], metric_vals["BB-Loc"], metric_vals["BB-IoU"]])
efficient_indices = self.is_pareto_efficient(
-np.round(np.array(self.pareto_costs) / self.bin_width, 0)*self.bin_width, return_mask=False)
self.pareto_checkpoints = [
self.pareto_checkpoints[idx] for idx in efficient_indices]
self.pareto_costs = [self.pareto_costs[idx]
for idx in efficient_indices]
print(f"Current Pareto Front Size: {len(self.pareto_checkpoints)}")
pareto_str = ""
for idx, cost in enumerate(self.pareto_costs):
pareto_str += f"({cost[0]:.4f},{cost[1]:.4f},{cost[2]:.4f},{self.pareto_checkpoints[idx]['epochs']})"
print(f"Pareto Costs: {pareto_str}")
def get_pareto_front(self):
return self.pareto_checkpoints, self.pareto_costs
def save_pareto_front(self, save_path):
augmented_path = os.path.join(save_path, "pareto_front")
os.makedirs(augmented_path, exist_ok=True)
for idx in range(len(self.pareto_checkpoints)):
f_score = self.pareto_checkpoints[idx]["F-Score"]
bb_score = self.pareto_checkpoints[idx]["BB-Loc"]
iou_score = self.pareto_checkpoints[idx]["BB-IoU"]
epoch = self.pareto_checkpoints[idx]["epochs"]
torch.save(self.pareto_checkpoints[idx], os.path.join(
augmented_path, f"model_checkpoint_pareto_{f_score:.4f}_{bb_score:.4f}_{iou_score:.4f}_{epoch}.pt"))
def is_pareto_efficient(self, costs, return_mask=True):
"""
Find the pareto-efficient points
: param costs: An(n_points, n_costs) array
: param return_mask: True to return a mask
: return: An array of indices of pareto-efficient points.
If return_mask is True, this will be an(n_points, ) boolean array
Otherwise it will be a(n_efficient_points, ) integer array of indices.
"""
is_efficient = np.arange(costs.shape[0])
n_points = costs.shape[0]
next_point_index = 0 # Next index in the is_efficient array to search for
while next_point_index < len(costs):
nondominated_point_mask = np.any(
costs < costs[next_point_index], axis=1)
nondominated_point_mask[next_point_index] = True
# Remove dominated points
is_efficient = is_efficient[nondominated_point_mask]
costs = costs[nondominated_point_mask]
next_point_index = np.sum(
nondominated_point_mask[:next_point_index])+1
if return_mask:
is_efficient_mask = np.zeros(n_points, dtype=bool)
is_efficient_mask[is_efficient] = True
return is_efficient_mask
else:
return is_efficient
def enlarge_bb(bb_list, percentage=0):
en_bb_list = []
for bb_coord in bb_list:
xmin, ymin, xmax, ymax = bb_coord
width = xmax - xmin
height = ymax - ymin
w_margin = int(percentage * width)
h_margin = int(percentage * height)
new_xmin = max(0, xmin-w_margin)
new_xmax = min(223, xmax+w_margin)
new_ymin = max(0, ymin-h_margin)
new_ymax = min(223, ymax+h_margin)
en_bb_list.append([new_xmin, new_ymin, new_xmax, new_ymax])
return en_bb_list
def update_val_metrics(metric_vals):
metric_vals["Val-Accuracy"] = metric_vals.pop("Accuracy")
metric_vals["Val-Precision"] = metric_vals.pop("Precision")
metric_vals["Val-Recall"] = metric_vals.pop("Recall")
metric_vals["Val-F-Score"] = metric_vals.pop("F-Score")
metric_vals["Val-Average-Loss"] = metric_vals.pop("Average-Loss")
if "BB-Loc" in metric_vals:
metric_vals["Val-BB-Loc"] = metric_vals.pop("BB-Loc")
metric_vals["Val-BB-IoU"] = metric_vals.pop("BB-IoU")
return metric_vals