-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathlosses.py
88 lines (64 loc) · 2.59 KB
/
losses.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
import torch
def get_localization_loss(loss_name):
loss_map = {
"Energy": EnergyPointingGameBBMultipleLoss,
"L1": GradiaBBMultipleLoss,
"RRR": RRRBBMultipleLoss,
"PPCE": HAICSBBMultipleLoss
}
return loss_map[loss_name]()
class BBMultipleLoss:
def __init__(self):
super().__init__()
def __call__(self, attributions, bb_coordinates):
raise NotImplementedError
def get_bb_mask(self, bb_coordinates, mask_shape):
bb_mask = torch.zeros(mask_shape, dtype=torch.long)
for coords in bb_coordinates:
xmin, ymin, xmax, ymax = coords
bb_mask[ymin:ymax, xmin:xmax] = 1
return bb_mask
class EnergyPointingGameBBMultipleLoss:
def __init__(self):
super().__init__()
self.only_positive = False
self.binarize = False
def __call__(self, attributions, bb_coordinates):
pos_attributions = attributions.clamp(min=0)
bb_mask = torch.zeros_like(pos_attributions, dtype=torch.long)
for coords in bb_coordinates:
xmin, ymin, xmax, ymax = coords
bb_mask[ymin:ymax, xmin:xmax] = 1
num = pos_attributions[torch.where(bb_mask == 1)].sum()
den = pos_attributions.sum()
if den < 1e-7:
return 1-num
return 1-num/den
class RRRBBMultipleLoss(BBMultipleLoss):
def __init__(self):
super().__init__()
self.only_positive = False
self.binarize = True
def __call__(self, attributions, bb_coordinates):
bb_mask = self.get_bb_mask(bb_coordinates, attributions.shape)
irrelevant_attrs = attributions[torch.where(bb_mask == 0)]
return torch.square(irrelevant_attrs).sum()
class GradiaBBMultipleLoss(BBMultipleLoss):
def __init__(self):
super().__init__()
self.l1_loss = torch.nn.L1Loss(reduction='mean')
self.only_positive = True
self.binarize = True
def __call__(self, attributions, bb_coordinates):
bb_mask = self.get_bb_mask(bb_coordinates, attributions.shape).cuda()
return self.l1_loss(attributions, bb_mask)
class HAICSBBMultipleLoss(BBMultipleLoss):
def __init__(self):
super().__init__()
self.bce_loss = torch.nn.BCELoss(reduction='mean')
self.only_positive = True
self.binarize = True
def __call__(self, attributions, bb_coordinates):
bb_mask = self.get_bb_mask(bb_coordinates, attributions.shape)
attributions_in_box = attributions[torch.where(bb_mask == 1)]
return self.bce_loss(attributions_in_box, torch.ones_like(attributions_in_box))