-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcartpole.cpp
72 lines (63 loc) · 2.35 KB
/
cartpole.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
#include<adjoint_ode.cpp>
#include<numerical_jacobian.cpp>
#include<vector>
#include<iostream>
struct cartpole_dyn {
template <typename T0, typename T1, typename T2>
std::vector<typename stan::return_type<T1, T2>::type>
operator()(const T0 &t, const std::vector<T1> &y,
const std::vector<T2> &theta, const std::vector<double> &x,
const std::vector<int> &x_i, std::ostream *msgs) const {
std::vector<typename stan::return_type<T1, T2>::type> dydt(3);
dydt[0] = (1.0/(theta[3]*theta[1]*cos(y[1]) - theta[1]*theta[2] - theta[1]*theta[3]))*(-1*theta[3]*theta[1]*theta[0]*sin(y[1])*cos(y[1]) - theta[1]*theta[4] - theta[3]*theta[1]*theta[1]*y[2]*y[2]*sin(y[1]));
dydt[1] = y[2];
dydt[2] = (1.0/(theta[3]*theta[1]*cos(y[1]) - theta[1]*theta[2] - theta[1]*theta[3]))*((theta[2]+theta[3])*theta[0]*sin(y[1]) + theta[4]*cos(y[1]) + theta[3]*theta[1]*y[2]*y[2]*sin(y[1])*cos(y[1]));
return dydt;
}
};
int main() {
std::vector<stan::math::var> y0 = {
0,
stan::math::pi()/4,
0
};
std::vector<stan::math::var> theta0 = {
9.8, // g
1, // l
1, // m1
1, // m2
10 // F
};
stan::math::var t0 = 0;
std::vector<stan::math::var> ts = {0.3};
cartpole_dyn dyn;
std::vector<std::vector<stan::math::var>> ys = stan::math::integrateAdj_ode_rk45<cartpole_dyn>(
dyn, y0, t0, ts, theta0,
std::vector<double>({}), std::vector<int>({})
);
std::vector<stan::math::var> y1 = ys[0];
stan::math::var t1 = ts[0];
std::cout << "y(t1): ";
for (int i=0; i<y1.size(); i++) {
std::cout << y1[i] << " ";
}
std::cout << std::endl << std::endl;
std::cout << "\t Analytical Gradient Transpose" << std::endl;
for (int i=0; i<y1.size(); i++) {
y1[i].grad();
std::cout << t0.adj() << " " << t1.adj() << " ";
for (int j=0; j<theta0.size(); j++) {
std::cout << theta0[j].adj() << " ";
}
std::cout << std::endl;
stan::math::set_zero_all_adjoints();
}
std::cout << std::endl << std::endl;
std::cout << "\t Numerical Gradient Transpose" << std::endl;
numerical_jacobian<cartpole_dyn>(
dyn, value_of(y0), t0.val(), t1.val(),
value_of(theta0), 0.001
);
std::cout << std::endl;
return 0;
}