-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path03-k-NN.html
373 lines (329 loc) · 18.1 KB
/
03-k-NN.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
<!DOCTYPE html>
<html lang="" xml:lang="">
<head>
<meta charset="utf-8" />
<meta http-equiv="X-UA-Compatible" content="IE=edge" />
<title>第 4 章 k邻近法 | 统计学习方法-读书笔记</title>
<meta name="description" content="最初看到 elegantbook 做的书籍样式很漂亮,就想把它引入到 bookdown 中,遂定制了此模版。在此基础上,做了迁移和扩展的工作,融合了 LaTeX (精美)、Pandoc (简洁) 和 R (强大) 的特性。This is a bookdown template based on ElegantBook. The output format for this template is bookdown::gitbook and bookdown::pdf_book." />
<meta name="generator" content="bookdown 0.26 and GitBook 2.6.7" />
<meta property="og:title" content="第 4 章 k邻近法 | 统计学习方法-读书笔记" />
<meta property="og:type" content="book" />
<meta property="og:description" content="最初看到 elegantbook 做的书籍样式很漂亮,就想把它引入到 bookdown 中,遂定制了此模版。在此基础上,做了迁移和扩展的工作,融合了 LaTeX (精美)、Pandoc (简洁) 和 R (强大) 的特性。This is a bookdown template based on ElegantBook. The output format for this template is bookdown::gitbook and bookdown::pdf_book." />
<meta name="github-repo" content="XiangyunHuang/ElegantBookdown" />
<meta name="twitter:card" content="summary" />
<meta name="twitter:title" content="第 4 章 k邻近法 | 统计学习方法-读书笔记" />
<meta name="twitter:description" content="最初看到 elegantbook 做的书籍样式很漂亮,就想把它引入到 bookdown 中,遂定制了此模版。在此基础上,做了迁移和扩展的工作,融合了 LaTeX (精美)、Pandoc (简洁) 和 R (强大) 的特性。This is a bookdown template based on ElegantBook. The output format for this template is bookdown::gitbook and bookdown::pdf_book." />
<meta name="author" content="LEE" />
<meta name="date" content="2022-04-20" />
<meta name="viewport" content="width=device-width, initial-scale=1" />
<meta name="apple-mobile-web-app-capable" content="yes" />
<meta name="apple-mobile-web-app-status-bar-style" content="black" />
<link rel="prev" href="02-perceptron.html"/>
<link rel="next" href="04-naive-Bayes.html"/>
<script src="libs/jquery-3.6.0/jquery-3.6.0.min.js"></script>
<script src="https://cdn.jsdelivr.net/npm/[email protected]/dist/fuse.min.js"></script>
<link href="libs/gitbook-2.6.7/css/style.css" rel="stylesheet" />
<link href="libs/gitbook-2.6.7/css/plugin-table.css" rel="stylesheet" />
<link href="libs/gitbook-2.6.7/css/plugin-bookdown.css" rel="stylesheet" />
<link href="libs/gitbook-2.6.7/css/plugin-highlight.css" rel="stylesheet" />
<link href="libs/gitbook-2.6.7/css/plugin-search.css" rel="stylesheet" />
<link href="libs/gitbook-2.6.7/css/plugin-fontsettings.css" rel="stylesheet" />
<link href="libs/gitbook-2.6.7/css/plugin-clipboard.css" rel="stylesheet" />
<link href="libs/anchor-sections-1.1.0/anchor-sections.css" rel="stylesheet" />
<link href="libs/anchor-sections-1.1.0/anchor-sections-hash.css" rel="stylesheet" />
<script src="libs/anchor-sections-1.1.0/anchor-sections.js"></script>
<script type="text/x-mathjax-config">
MathJax.Hub.Config({
TeX: {
Macros: {
bm: ["{\\boldsymbol #1}",1],
},
extensions: ["cancel.js"]
}
});
</script>
<!-- add line break after theorem title -->
<script>
document.addEventListener("DOMContentLoaded", (event) => {
for (let s of document.querySelectorAll("span.theorem, span.lemma, span.proposition, span.corollary")) {
s.insertAdjacentHTML('afterend', '<br style="line-height:2px;"/>');
}
});
</script>
<!-- check if --themcolor in style.css matches one of elegantbook theme colors. If so, generates the color palette -->
<script>
document.addEventListener("DOMContentLoaded", (event) => {
const cssroot = document.querySelector(':root');
let theme_color = getComputedStyle(document.documentElement).getPropertyValue('--themecolor').trim();
// blue is the default option
switch (theme_color) {
case 'green':
cssroot.style.setProperty('--structurecolor', 'rgb(0,120,2)');
cssroot.style.setProperty('--main', 'rgb(70,70,70)');
cssroot.style.setProperty('--mainbg', 'rgba(0,166,82,0.05)');
cssroot.style.setProperty('--second', 'rgb(115,45,2)');
cssroot.style.setProperty('--secondbg', 'rgba(115,45,2,0.05)');
cssroot.style.setProperty('--third', 'rgb(0,80,80)');
cssroot.style.setProperty('--thirdbg', 'rgba(0,80,80,0.05)');
break;
case 'cyan':
cssroot.style.setProperty('--structurecolor', 'rgb(31,186,190)');
cssroot.style.setProperty('--main', 'rgb(59,180,5)');
cssroot.style.setProperty('--mainbg', 'rgba(59,180,5,0.05)');
cssroot.style.setProperty('--second', 'rgb(175,153,8)');
cssroot.style.setProperty('--secondbg', 'rgba(175,153,8,0.05)');
cssroot.style.setProperty('--third', 'rgb(244,105,102)');
cssroot.style.setProperty('--thirdbg', 'rgba(244,105,102,0.05)');
break;
case 'gray':
cssroot.style.setProperty('--structurecolor', 'rgb(150,150,150)');
cssroot.style.setProperty('--main', 'rgb(150,150,150)');
cssroot.style.setProperty('--mainbg', 'rgba(150,150,150,0.05)');
cssroot.style.setProperty('--second', 'rgb(150,150,150)');
cssroot.style.setProperty('--secondbg', 'rgba(150,150,150,0.05)');
cssroot.style.setProperty('--third', 'rgb(150,150,150)');
cssroot.style.setProperty('--thirdbg', 'rgba(150,150,150,0.05)');
break;
case 'black':
cssroot.style.setProperty('--structurecolor', 'rgb(0,0,0)');
cssroot.style.setProperty('--main', 'rgb(0,0,0)');
cssroot.style.setProperty('--mainbg', 'rgba(0,0,0,0.05)');
cssroot.style.setProperty('--second', 'rgb(0,0,0)');
cssroot.style.setProperty('--secondbg', 'rgba(0,0,0,0.05)');
cssroot.style.setProperty('--third', 'rgb(0,0,0)');
cssroot.style.setProperty('--thirdbg', 'rgba(0,0,0,0.05)');
break;
default:
cssroot.style.setProperty('--structurecolor', 'rgb(60,113,183)');
cssroot.style.setProperty('--main', 'rgb(0,166,82)');
cssroot.style.setProperty('--mainbg', 'rgba(0,166,82,0.05)');
cssroot.style.setProperty('--second', 'rgb(255,134,24)');
cssroot.style.setProperty('--secondbg', 'rgba(255,134,24,0.05)');
cssroot.style.setProperty('--third', 'rgb(0,174,247)');
cssroot.style.setProperty('--thirdbg', 'rgba(0,174,247,0.05)');
}
});
</script>
<style type="text/css">
pre > code.sourceCode { white-space: pre; position: relative; }
pre > code.sourceCode > span { display: inline-block; line-height: 1.25; }
pre > code.sourceCode > span:empty { height: 1.2em; }
.sourceCode { overflow: visible; }
code.sourceCode > span { color: inherit; text-decoration: inherit; }
pre.sourceCode { margin: 0; }
@media screen {
div.sourceCode { overflow: auto; }
}
@media print {
pre > code.sourceCode { white-space: pre-wrap; }
pre > code.sourceCode > span { text-indent: -5em; padding-left: 5em; }
}
pre.numberSource code
{ counter-reset: source-line 0; }
pre.numberSource code > span
{ position: relative; left: -4em; counter-increment: source-line; }
pre.numberSource code > span > a:first-child::before
{ content: counter(source-line);
position: relative; left: -1em; text-align: right; vertical-align: baseline;
border: none; display: inline-block;
-webkit-touch-callout: none; -webkit-user-select: none;
-khtml-user-select: none; -moz-user-select: none;
-ms-user-select: none; user-select: none;
padding: 0 4px; width: 4em;
color: #aaaaaa;
}
pre.numberSource { margin-left: 3em; border-left: 1px solid #aaaaaa; padding-left: 4px; }
div.sourceCode
{ }
@media screen {
pre > code.sourceCode > span > a:first-child::before { text-decoration: underline; }
}
code span.al { color: #ff0000; font-weight: bold; } /* Alert */
code span.an { color: #60a0b0; font-weight: bold; font-style: italic; } /* Annotation */
code span.at { color: #7d9029; } /* Attribute */
code span.bn { color: #40a070; } /* BaseN */
code span.bu { } /* BuiltIn */
code span.cf { color: #007020; font-weight: bold; } /* ControlFlow */
code span.ch { color: #4070a0; } /* Char */
code span.cn { color: #880000; } /* Constant */
code span.co { color: #60a0b0; font-style: italic; } /* Comment */
code span.cv { color: #60a0b0; font-weight: bold; font-style: italic; } /* CommentVar */
code span.do { color: #ba2121; font-style: italic; } /* Documentation */
code span.dt { color: #902000; } /* DataType */
code span.dv { color: #40a070; } /* DecVal */
code span.er { color: #ff0000; font-weight: bold; } /* Error */
code span.ex { } /* Extension */
code span.fl { color: #40a070; } /* Float */
code span.fu { color: #06287e; } /* Function */
code span.im { } /* Import */
code span.in { color: #60a0b0; font-weight: bold; font-style: italic; } /* Information */
code span.kw { color: #007020; font-weight: bold; } /* Keyword */
code span.op { color: #666666; } /* Operator */
code span.ot { color: #007020; } /* Other */
code span.pp { color: #bc7a00; } /* Preprocessor */
code span.sc { color: #4070a0; } /* SpecialChar */
code span.ss { color: #bb6688; } /* SpecialString */
code span.st { color: #4070a0; } /* String */
code span.va { color: #19177c; } /* Variable */
code span.vs { color: #4070a0; } /* VerbatimString */
code span.wa { color: #60a0b0; font-weight: bold; font-style: italic; } /* Warning */
</style>
<style type="text/css">
/* Used with Pandoc 2.11+ new --citeproc when CSL is used */
div.csl-bib-body { }
div.csl-entry {
clear: both;
}
.hanging div.csl-entry {
margin-left:2em;
text-indent:-2em;
}
div.csl-left-margin {
min-width:2em;
float:left;
}
div.csl-right-inline {
margin-left:2em;
padding-left:1em;
}
div.csl-indent {
margin-left: 2em;
}
</style>
<link rel="stylesheet" href="style.css" type="text/css" />
</head>
<body>
<div class="book without-animation with-summary font-size-2 font-family-1" data-basepath=".">
<div class="book-summary">
<nav role="navigation">
<ul class="summary">
<li><a href="./">Elegant Bookdown Template</a></li>
<li class="divider"></li>
<li class="chapter" data-level="1" data-path="index.html"><a href="index.html"><i class="fa fa-check"></i><b>1</b> 已有 Block</a>
<ul>
<li class="chapter" data-level="1.1" data-path="index.html"><a href="index.html#math-formular"><i class="fa fa-check"></i><b>1.1</b> 数学公式</a></li>
<li class="chapter" data-level="1.2" data-path="index.html"><a href="index.html#custom-block"><i class="fa fa-check"></i><b>1.2</b> 自定义 block</a></li>
</ul></li>
<li class="part"><span><b>I 监督学习</b></span></li>
<li class="chapter" data-level="2" data-path="01-intro-Supervised.html"><a href="01-intro-Supervised.html"><i class="fa fa-check"></i><b>2</b> 统计学习及监督学习盖伦</a></li>
<li class="chapter" data-level="3" data-path="02-perceptron.html"><a href="02-perceptron.html"><i class="fa fa-check"></i><b>3</b> 感知机</a></li>
<li class="chapter" data-level="4" data-path="03-k-NN.html"><a href="03-k-NN.html"><i class="fa fa-check"></i><b>4</b> k邻近法</a></li>
<li class="chapter" data-level="5" data-path="04-naive-Bayes.html"><a href="04-naive-Bayes.html"><i class="fa fa-check"></i><b>5</b> 朴素贝叶斯</a></li>
<li class="chapter" data-level="6" data-path="05-decision-tree.html"><a href="05-decision-tree.html"><i class="fa fa-check"></i><b>6</b> 决策树</a></li>
<li class="chapter" data-level="7" data-path="06-logistic-and-maximun-entropy.html"><a href="06-logistic-and-maximun-entropy.html"><i class="fa fa-check"></i><b>7</b> 逻辑斯谛回归和最大熵模型</a></li>
<li class="chapter" data-level="8" data-path="07-SVM.html"><a href="07-SVM.html"><i class="fa fa-check"></i><b>8</b> 支持向量机</a></li>
<li class="chapter" data-level="9" data-path="04-naive-Bayes.html"><a href="04-naive-Bayes.html#sec:naive-Bayes"><i class="fa fa-check"></i><b>9</b> 朴素贝叶斯</a></li>
<li class="chapter" data-level="10" data-path="09-EM.html"><a href="09-EM.html"><i class="fa fa-check"></i><b>10</b> EM算法及推广</a></li>
<li class="chapter" data-level="11" data-path="09-EM.html"><a href="09-EM.html#sec:EM"><i class="fa fa-check"></i><b>11</b> 隐马尔科夫模型</a></li>
<li class="chapter" data-level="12" data-path="11-CRF.html"><a href="11-CRF.html"><i class="fa fa-check"></i><b>12</b> 条件随机场</a></li>
<li class="chapter" data-level="13" data-path="12-summary-Supervised.html"><a href="12-summary-Supervised.html"><i class="fa fa-check"></i><b>13</b> 监督学习方法总结</a></li>
<li class="part"><span><b>II 无监督学习</b></span></li>
<li class="chapter" data-level="14" data-path="13-intro-Unsupervised.html"><a href="13-intro-Unsupervised.html"><i class="fa fa-check"></i><b>14</b> 无统计学习概论</a></li>
<li class="chapter" data-level="15" data-path="14-clustering-methods.html"><a href="14-clustering-methods.html"><i class="fa fa-check"></i><b>15</b> 聚类方法</a></li>
<li class="chapter" data-level="16" data-path="15-SVD.html"><a href="15-SVD.html"><i class="fa fa-check"></i><b>16</b> 奇异值分解</a></li>
<li class="chapter" data-level="17" data-path="16-PCA.html"><a href="16-PCA.html"><i class="fa fa-check"></i><b>17</b> 主成份分析</a></li>
<li class="chapter" data-level="18" data-path="03-k-NN.html"><a href="03-k-NN.html#sec:k-NN"><i class="fa fa-check"></i><b>18</b> k邻近法</a></li>
<li class="chapter" data-level="19" data-path="18-PLSA.html"><a href="18-PLSA.html"><i class="fa fa-check"></i><b>19</b> 概率潜在语义分析</a></li>
<li class="chapter" data-level="20" data-path="19-MCMC.html"><a href="19-MCMC.html"><i class="fa fa-check"></i><b>20</b> 马尔科夫链蒙特卡洛法</a></li>
<li class="chapter" data-level="21" data-path="20-LDA.html"><a href="20-LDA.html"><i class="fa fa-check"></i><b>21</b> 潜在狄利克雷分布</a></li>
<li class="chapter" data-level="22" data-path="21-PageRank.html"><a href="21-PageRank.html"><i class="fa fa-check"></i><b>22</b> PageRank算法</a></li>
<li class="chapter" data-level="23" data-path="22-summary-Unsupervised.html"><a href="22-summary-Unsupervised.html"><i class="fa fa-check"></i><b>23</b> 无监督学习方法总结</a></li>
<li class="appendix"><span><b>附录</b></span></li>
<li class="chapter" data-level="A" data-path="24-appendix.html"><a href="24-appendix.html"><i class="fa fa-check"></i><b>A</b> 梯度下降法</a></li>
<li class="chapter" data-level="B" data-path="24-appendix.html"><a href="24-appendix.html#sec:Newton-quasi-Newton"><i class="fa fa-check"></i><b>B</b> 牛顿法和拟牛顿法</a></li>
<li class="chapter" data-level="C" data-path="24-appendix.html"><a href="24-appendix.html#sec:Lagrange-duality"><i class="fa fa-check"></i><b>C</b> 拉格朗日对偶性</a></li>
<li class="chapter" data-level="D" data-path="24-appendix.html"><a href="24-appendix.html#sec:matrix-subspace"><i class="fa fa-check"></i><b>D</b> 矩阵的基本子空间</a></li>
<li class="chapter" data-level="E" data-path="24-appendix.html"><a href="24-appendix.html#sec:KL-dirichlet-distribution"><i class="fa fa-check"></i><b>E</b> KL散度的定义和狄利克雷分布的性质</a></li>
<li class="chapter" data-level="" data-path="23-references.html"><a href="23-references.html"><i class="fa fa-check"></i>参考文献</a></li>
<li class="divider"></li>
<li><a href="https://github.com/rstudio/bookdown" target="blank">Published with bookdown</a></li>
</ul>
</nav>
</div>
<div class="book-body">
<div class="body-inner">
<div class="book-header" role="navigation">
<h1>
<i class="fa fa-circle-o-notch fa-spin"></i><a href="./">统计学习方法-读书笔记</a>
</h1>
</div>
<div class="page-wrapper" tabindex="-1" role="main">
<div class="page-inner">
<section class="normal" id="section-">
<div id="sec:k-NN" class="section level1 hasAnchor" number="4">
<h1><span class="header-section-number">第 4 章</span> k邻近法<a href="03-k-NN.html#sec:k-NN" class="anchor-section" aria-label="Anchor link to header"></a></h1>
</div>
</section>
</div>
</div>
</div>
<a href="02-perceptron.html" class="navigation navigation-prev " aria-label="Previous page"><i class="fa fa-angle-left"></i></a>
<a href="04-naive-Bayes.html" class="navigation navigation-next " aria-label="Next page"><i class="fa fa-angle-right"></i></a>
</div>
</div>
<script src="libs/gitbook-2.6.7/js/app.min.js"></script>
<script src="libs/gitbook-2.6.7/js/clipboard.min.js"></script>
<script src="libs/gitbook-2.6.7/js/plugin-search.js"></script>
<script src="libs/gitbook-2.6.7/js/plugin-sharing.js"></script>
<script src="libs/gitbook-2.6.7/js/plugin-fontsettings.js"></script>
<script src="libs/gitbook-2.6.7/js/plugin-bookdown.js"></script>
<script src="libs/gitbook-2.6.7/js/jquery.highlight.js"></script>
<script src="libs/gitbook-2.6.7/js/plugin-clipboard.js"></script>
<script>
gitbook.require(["gitbook"], function(gitbook) {
gitbook.start({
"sharing": {
"github": true,
"facebook": false,
"twitter": false,
"linkedin": false,
"weibo": false,
"instapaper": false,
"vk": false,
"whatsapp": false,
"all": {}
},
"fontsettings": {
"theme": "white",
"family": "sans",
"size": 2
},
"edit": {
"link": "https://github.com/XiangyunHuang/masr/edit/master/03-k-NN.Rmd",
"text": "编辑"
},
"history": {
"link": null,
"text": null
},
"view": {
"link": "https://github.com/XiangyunHuang/masr/blob/master/03-k-NN.Rmd",
"text": "查看"
},
"download": ["elegantbookdown.pdf", "elegantbookdown.epub"],
"search": {
"engine": "fuse",
"options": null
},
"toc": {
"collapse": "subsection"
}
});
});
</script>
<!-- dynamically load mathjax for compatibility with self-contained -->
<script>
(function () {
var script = document.createElement("script");
script.type = "text/javascript";
var src = "true";
if (src === "" || src === "true") src = "https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-MML-AM_CHTML";
if (location.protocol !== "file:")
if (/^https?:/.test(src))
src = src.replace(/^https?:/, '');
script.src = src;
document.getElementsByTagName("head")[0].appendChild(script);
})();
</script>
</body>
</html>