-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_ptmiss.py
425 lines (337 loc) · 16.7 KB
/
train_ptmiss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
#!/usr/bin/env python
# coding: utf-8
# Created by Jan Steggemann, based on prior work by Markus Seidel
import os
import pathlib
import datetime
import h5py
import optparse
import matplotlib.pyplot as plt
import matplotlib as mpl
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
import keras
from keras.callbacks import ReduceLROnPlateau
from keras.callbacks import ModelCheckpoint
from keras.callbacks import EarlyStopping
from keras.utils import plot_model
from keras.models import Model
from keras.layers import Input, Flatten, Reshape, Dense, BatchNormalization, Concatenate, Embedding
from keras import optimizers, initializers
from keras.layers import Lambda
from keras.backend import slice
from keras.layers.advanced_activations import PReLU
import tensorflow as tf
import keras.backend as K
from tensorflow import train
# Local imports
from cyclical_learning_rate import CyclicLR
from AdamW import AdamW
from HDF5MultiFile import DataGenerator, FileInput, FileInputSliceLast
from lr_finder import LRFinder
from weighted_sum_layer import weighted_sum_layer
from recoil_plots import recoil_plots
mpl.use('Agg')
def plot_history(history):
hist = pd.DataFrame(history.history)
hist['epoch'] = history.epoch
plt.figure()
plt.xlabel('Epoch')
plt.ylabel('Mean Squared Error')
plt.plot(hist['epoch'], hist['mean_squared_error'],
label='Train Error')
plt.plot(hist['epoch'], hist['val_mean_squared_error'],
label='Val Error')
plt.ylim([0.00001, 20])
plt.yscale('log')
plt.legend()
def custom_loss(y_true, y_pred, abs_resp=False):
px_truth = K.flatten(y_true[:,0])
py_truth = K.flatten(y_true[:,1])
px_pred = K.flatten(y_pred[:,0])
py_pred = K.flatten(y_pred[:,1])
pt_truth = K.sqrt(px_truth*px_truth + py_truth*py_truth)
px_truth1 = px_truth / pt_truth
py_truth1 = py_truth / pt_truth
if abs_resp:
upar_pred = px_truth1 * px_pred + py_truth1 * py_pred - pt_truth
# Note 50 = 50*norm_fac = 2500 GeV (if norm_fac = 50)
upar_pred_l100 = tf.boolean_mask(upar_pred, upar_pred < 100.)
upar_pred_plus = tf.boolean_mask(upar_pred_l100, upar_pred_l100 > 0.)
upar_pred_minus = tf.boolean_mask(upar_pred_l100, upar_pred_l100 < 0.)
dev = ((tf.reduce_sum(upar_pred_plus) + tf.reduce_sum(upar_pred_minus))/tf.reduce_sum(upar_pred_plus - upar_pred_minus))**2
else: # Relative response
# Secretly using absolute response
# upar_pred = (px_truth1 * px_pred + py_truth1 * py_pred)/pt_truth
upar_pred = (px_truth1 * px_pred + py_truth1 * py_pred) - pt_truth
# upar_pred = tf.boolean_mask(upar_pred, pt_truth > 20./50.) - 1.
pt_cut = pt_truth > 0./50.
upar_pred = tf.boolean_mask(upar_pred, pt_cut)
pt_truth_filtered = tf.boolean_mask(pt_truth, pt_cut)
filter_bin0 = pt_truth_filtered < 5./50.
filter_bin1 = tf.logical_and(pt_truth_filtered > 5./50., pt_truth_filtered < 10./50.)
filter_bin2 = pt_truth_filtered > 10./50.
upar_pred_pos_bin0 = tf.boolean_mask(upar_pred, tf.logical_and(filter_bin0, upar_pred > 0.))
upar_pred_neg_bin0 = tf.boolean_mask(upar_pred, tf.logical_and(filter_bin0, upar_pred < 0.))
upar_pred_pos_bin1 = tf.boolean_mask(upar_pred, tf.logical_and(filter_bin1, upar_pred > 0.))
upar_pred_neg_bin1 = tf.boolean_mask(upar_pred, tf.logical_and(filter_bin1, upar_pred < 0.))
upar_pred_pos_bin2 = tf.boolean_mask(upar_pred, tf.logical_and(filter_bin2, upar_pred > 0.))
upar_pred_neg_bin2 = tf.boolean_mask(upar_pred, tf.logical_and(filter_bin2, upar_pred < 0.))
norm = tf.reduce_sum(pt_truth_filtered)
dev = tf.abs(tf.reduce_sum(upar_pred_pos_bin0) + tf.reduce_sum(upar_pred_neg_bin0))
dev += tf.abs(tf.reduce_sum(upar_pred_pos_bin1) + tf.reduce_sum(upar_pred_neg_bin1))
dev += tf.abs(tf.reduce_sum(upar_pred_pos_bin2) + tf.reduce_sum(upar_pred_neg_bin2))
dev /= norm
# upar_pred_gr1 = tf.boolean_mask(upar_pred, upar_pred > 0.)
# upar_pred_le1 = tf.boolean_mask(upar_pred, upar_pred < 0.)
# dev = tf.abs((tf.reduce_sum(upar_pred_gr1) + tf.reduce_sum(upar_pred_le1))/(tf.reduce_sum(pt_truth_filtered)))
# uperp_pred = px_truth1 * py_pred - py_truth1 * px_pred
# loss = K.mean(upar_pred**2 + uperp_pred**2)
loss = 0.5*K.mean((px_pred - px_truth)**2 + (py_pred - py_truth)**2)
# dev = (K.mean(upar_pred_plus) + K.mean(upar_pred_minus))**2
loss += 200.*dev
return loss
def create_output_graph(n_features=8, n_features_cat=3, n_graph_layers=0, n_dense_layers=3, n_dense_per_graph_net=1, activation='tanh', do_weighted_sum=True, with_bias=True):
# [b'PF_dxy', b'PF_dz', b'PF_eta', b'PF_mass', b'PF_puppiWeight', b'PF_charge', b'PF_fromPV', b'PF_pdgId', b'PF_px', b'PF_py']
inputs = Input(shape=(maxNPF, n_features), name='input')
pxpy = Lambda(lambda x: slice(x, (0, 0, n_features-2), (-1, -1, -1)))(inputs)
if activation == 'prelu':
activation = PReLU()
if opt.embedding:
embeddings = []
for i_emb in range(n_features_cat):
input_cat = Input(shape=(maxNPF, 1), name='input_cat{}'.format(i_emb))
if i_emb == 0:
inputs = [inputs, input_cat]
else:
inputs.append(input_cat)
embedding = Embedding(input_dim=emb_input_dim[i_emb], output_dim=emb_out_dim, embeddings_initializer=initializers.RandomNormal(mean=0., stddev=0.4/emb_out_dim), name='embedding{}'.format(i_emb))(input_cat)
embedding = Reshape((maxNPF, 8))(embedding)
embeddings.append(embedding)
throughput = Concatenate()([inputs[0]] + [emb for emb in embeddings])
# x = GlobalExchange()(inputs if not opt.embedding else throughput)
if opt.embedding:
x = throughput
for i_graph in range(n_graph_layers):
if i_graph > 0:
x = GlobalExchange()(x)
for __ in range(n_dense_per_graph_net):
x = Dense(64, activation=activation, kernel_initializer='lecun_uniform')(x)
# x = BatchNormalization(momentum=0.8)(x)
x = GravNet(n_neighbours=20, n_dimensions=4,
n_filters=42, n_propagate=18)(x)
x = BatchNormalization(momentum=0.8)(x)
dense_layers = [] # [4]
if do_weighted_sum:
for i_dense in range(n_dense_layers):
x = Dense(64//2**i_dense, activation=activation, kernel_initializer='lecun_uniform')(x)
x = BatchNormalization(momentum=0.95)(x)
# List of weights. Increase to 3 when operating with biases
# x = Dense(3 if with_bias else 1, activation='linear', kernel_initializer='lecun_uniform')(x)
# Expect typical weights to not be of order 1 but somewhat smaller, so apply explicit scaling
x = Dense(3 if with_bias else 1, activation='linear', kernel_initializer=initializers.VarianceScaling(scale=0.02))(x)
print('Shape of last dense layer', x.shape)
x = Concatenate()([x, pxpy])
#x = Flatten()(x)
x = weighted_sum_layer(with_bias)(x)
else:
for i_dense in range(n_dense_layers):
x = Dense(64//2**i_dense, activation=activation, kernel_initializer='lecun_uniform')(x)
x = Flatten()(x)
dense_layers = [32, 16, 8]
dense_activation = 'relu'
for dense_size in dense_layers:
x = Dense(dense_size, activation=dense_activation,
kernel_initializer='lecun_uniform')(x)
x = Dense(2, activation='linear', name='output')(x)
return inputs, x
def create_simple_graph(n_dense=3, kernel_initializer='lecun_uniform'):
inputs = Input(shape=(Z.shape[1],), name='input')
x = Dense(64, activation='relu', kernel_initializer=kernel_initializer)(inputs)
for _ in range(n_dense - 1):
x = Dense(64, activation='relu', kernel_initializer=kernel_initializer)(x)
x = Dense(2, activation='linear', name='output')(x)
return inputs, x
# configuration
usage = 'usage: %prog [options]'
parser = optparse.OptionParser(usage)
parser.add_option('-i', '--input', dest='input',
help='input file', default='tree_100k.h5', type='string')
parser.add_option('-l', '--load', dest='load',
help='load model from timestamp', default='', type='string')
parser.add_option('--notrain', dest='notrain',
help='do not train model', default=False, action='store_true')
parser.add_option('--simple', dest='simple',
help='use simple model', default=False, action='store_true')
parser.add_option('--embedding', dest='embedding',
help='use embeddings', default=False, action='store_true')
parser.add_option('--find_lr', dest='find_lr',
help='run learning rate finder', default=False, action='store_true')
(opt, args) = parser.parse_args()
# general setup
maxNPF = 4500
n_features_pf = 8
n_features_pf_cat = 3
normFac = 50.
epochs = 50
batch_size = 192*32 if opt.simple else 256//8
preprocessed = True
emb_out_dim = 8
with h5py.File(opt.input, 'r', swmr=True) as h5f:
# Y = h5f['Y'][:]
# Z = h5f['Z'][:]
if not opt.simple:
# X = h5f['X'] #[:]
if opt.embedding:
X_c = [h5f[f'X_c_{i}'] for i in range(n_features_pf_cat)]
if not opt.simple:
# print(X.shape)
# n_features = X.shape[2]
if opt.embedding:
# categorical inputs
print([x.shape for x in X_c])
emb_input_dim = {
i:np.max(X_c[i][0:1000]) + 1 for i in range(n_features_pf_cat)
}
# for i in range(n_features_cat):
# print('Embedding', i, 'max value', np.max(X_c[:,:,i]))
# n_max_embed = np.max(np.max(X_c[:,i] for i in range(n_features_cat)))
print('Embedding dimensions', emb_input_dim)
# met_flavours = ['', 'Chs', 'NoPU', 'Puppi', 'PU', 'PUCorr', 'Raw']
met_flavours = ['', 'Puppi', 'Raw']
Y = FileInput(opt.input, 'Y')
print('Y.shape', Y.shape)
# print('Z.shape', Z.shape)
# inputs, outputs = create_output_graph()
if opt.simple:
inputs, outputs = create_simple_graph()
else:
inputs, outputs = create_output_graph(n_features=n_features_pf, n_features_cat=n_features_pf_cat)
lr_scale = 1.
# lr = CyclicLR(base_lr=0.001, max_lr=0.01, step_size=len(Y)/5., mode='triangular2')
clr = CyclicLR(base_lr=0.0003*lr_scale, max_lr=0.001*lr_scale, step_size=len(Y)/batch_size, mode='triangular2')
# create the model
model = Model(inputs=inputs, outputs=outputs)
# compile the model
optimizer = optimizers.Adam(lr=1., clipnorm=1.)
# optimizer = optimizers.SGD(lr=0.0001, decay=0., momentum=0., nesterov=False)
# optimizer = AdamW(lr=0.0000, beta_1=0.8, beta_2=0.999, epsilon=None, decay=0., weight_decay=0.000, batch_size=batch_size, samples_per_epoch=int(len(Z)*0.8), epochs=epochs)
model.compile(loss='mse', optimizer=optimizer,
metrics=['mean_absolute_error', 'mean_squared_error'])
# model.compile(loss=custom_loss, optimizer=optimizer,
# metrics=['mean_absolute_error', 'mean_squared_error'])
# print the model summary
model.summary()
if opt.load:
timestamp = opt.load
else:
timestamp = datetime.datetime.now().strftime("%Y-%m-%d_%H-%M")
path = f'models/{timestamp}'
pathlib.Path(path).mkdir(parents=True, exist_ok=True)
plot_model(model, to_file=f'{path}/model.png', show_shapes=True)
if opt.load:
model.load_weights(f'{path}/model.h5')
print(f'Restored model {timestamp}')
with open(f'{path}/summary.txt', 'w') as txtfile:
# Pass the file handle in as a lambda function to make it callable
model.summary(print_fn=lambda x: txtfile.write(x + '\n'))
Yr = Y
indices = np.array([i for i in range(len(Yr)//batch_size)])
indices_train, indices_test = train_test_split(indices, test_size=0.2, random_state=7)
Z = FileInput(opt.input, 'Z')
# Now we need a generator that takes these indices and splits on the h5py file
Xr = FileInput(opt.input, 'X') if not opt.simple else Z
if not opt.simple and opt.embedding:
# Xr = [FileInput(opt.input, 'X')] + [X_c[:,:,i:i+1] for i in range(n_features_cat)]
Xr = [FileInput(opt.input, 'X')] + [FileInput(opt.input, f'X_c_{i}') for i in range(n_features_pf_cat)]
gen_x_train = DataGenerator(Xr, [Yr], batch_size, indices_train)
gen_x_test = DataGenerator(Xr, [Yr], batch_size, indices_test)
# early stopping callback
early_stopping = EarlyStopping(monitor='val_loss', patience=10, verbose=1)
# model checkpoint callback
# this saves our model architecture + parameters into dense_model.h5
model_checkpoint = ModelCheckpoint(f'{path}/model.h5', monitor='val_loss',
verbose=0, save_best_only=True,
save_weights_only=False, mode='auto',
period=1)
reduce_lr = ReduceLROnPlateau(
monitor='val_loss', factor=0.5, patience=4, min_lr=0.000001, cooldown=3, verbose=1)
stop_on_nan = keras.callbacks.TerminateOnNaN()
# LR finder
if opt.find_lr:
# pre-train to avoid model being too far away from interesting range
history = model.fit_generator(gen_x_train, epochs=2, verbose=1, callbacks=[clr])
lr_finder = LRFinder(model)
lr_finder.find_generator(gen_x_train, 0.00001, 1.0, 5)
lr_finder.plot_loss()
import pdb; pdb.set_trace()
# Run training
if not opt.notrain:
# Train classifier
history = model.fit_generator(gen_x_train,
epochs=epochs,
verbose=1, # switch to 1 for more verbosity
callbacks=[early_stopping, clr, stop_on_nan],#, reduce_lr], #, lr, reduce_lr],
# callbacks=[early_stopping, reduce_lr], #, lr, reduce_lr],
use_multiprocessing=True,
workers=8,
validation_data=gen_x_test)
# ## Plot performance
# Here, we plot the history of the training and the performance in a ROC curve
plot_history(history)
plt.savefig(f'{path}/history.pdf', bbox_inches='tight')
model.save(f'{path}/model.h5')
from tensorflow import saved_model
saved_model.simple_save(K.get_session(), f'{path}/saved_model', inputs={t.name:t for t in model.input}, outputs={t.name:t for t in model.outputs})
from tensorflow.python.framework import graph_util
frozen_graph = graph_util.convert_variables_to_constants(K.get_session(), K.get_session().graph_def, ['output/BiasAdd'])
# train.write_graph(graph_or_graph_def=K.get_session().graph_def, logdir=f'{path}', name='saved_model.pb', as_text=False)
train.write_graph(graph_or_graph_def=frozen_graph, logdir=f'{path}', name='saved_model.pb', as_text=False)
# Print info about weights
names = [weight.name for layer in model.layers for weight in layer.weights]
weights = model.get_weights()
for name, weight in zip(names, weights):
print(name, weight.mean(), weight.var())
### need to get Z here if not there ###
# Print info about physically meaningful quantities
selectors = {
'ptgr100':np.where(np.sqrt(Y[:, 1]**2 + Y[:, 0]**2) > 100./normFac),
'ptgr50':np.where(np.sqrt(Y[:, 1]**2 + Y[:, 0]**2) > 50./normFac),
'all':np.ones(len(Z), dtype=bool)
}
# Get predictions
pred = model.predict(Xr)
px_pred = pred[:, 0].flatten()*normFac
py_pred = pred[:, 1].flatten()*normFac
truth = Y
px_truth = truth[:, 0]*normFac
py_truth = truth[:, 1]*normFac
for sel_name, sel in selectors.items():
print('Selection:', sel_name)
for i, met_flavour in enumerate(met_flavours + ['Zero']):
pred_px = Z[:, i*3]*normFac if met_flavour != 'Zero' else np.zeros(len(Z))
pred_py = Z[:, i*3 + 1]*normFac if met_flavour != 'Zero' else np.zeros(len(Z))
mse_px = np.mean((pred_px[sel] - px_truth[sel])**2)
mse_py = np.mean((pred_py[sel] - py_truth[sel])**2)
print(f'Algo {met_flavour:8} MSE px {mse_px:.1f} MSE py {mse_py:.1f}')
mse_px = np.mean((px_pred[sel] - px_truth[sel])**2)
mse_py = np.mean((py_pred[sel] - py_truth[sel])**2)
met_flavour = 'DNN'
print(f'Algo {met_flavour:8} MSE px {mse_px:.1f} MSE py {mse_py:.1f}')
pt_pred = np.sqrt(px_pred*px_pred + py_pred*py_pred)
pt_truth = np.sqrt(px_truth*px_truth + py_truth*py_truth)
px_truth1 = px_truth / pt_truth
py_truth1 = py_truth / pt_truth
par_pred = px_truth1 * px_pred + py_truth1 * py_pred
px_pred_pfmet = Z[:, 0].flatten()*normFac
py_pred_pfmet = Z[:, 1].flatten()*normFac
par_pred_pfmet = px_truth1 * px_pred_pfmet + py_truth1 * py_pred_pfmet
px_pred_puppi = Z[:, met_flavours.index('Puppi')*3].flatten()*normFac
py_pred_puppi = Z[:, met_flavours.index('Puppi')*3 + 1].flatten()*normFac
par_pred_puppi = px_truth1 * px_pred_puppi + py_truth1 * py_pred_puppi
truth = px_truth, py_truth, pt_truth
pred = px_pred, py_pred, pt_pred, par_pred
pfmet = px_pred_pfmet, py_pred_pfmet, par_pred_pfmet
puppi = px_pred_puppi, py_pred_puppi, par_pred_puppi
recoil_plots(truth, pred, pfmet, puppi, path)