-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrecoil_plots.py
183 lines (162 loc) · 7.55 KB
/
recoil_plots.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.colors import LogNorm
from matplotlib.lines import Line2D
def recoil_plots(truth, pred, pfmet, puppi, path):
px_truth, py_truth, pt_truth = truth
px_pred, py_pred, pt_pred, par_pred = pred
px_pred_pfmet, py_pred_pfmet, par_pred_pfmet = pfmet
px_pred_puppi, py_pred_puppi, par_pred_puppi = puppi
plt.style.use('default')
plotrange = 100
# PX
plt.figure(figsize=(24, 6))
plt.subplot(131)
plt.xlabel('recoil px truth [GeV]')
plt.ylabel('recoil px DeepRecoil [GeV]')
#plt.scatter(px_truth, px_pred, s=0.25, c='k')
plt.hist2d(px_truth, px_pred, norm=LogNorm(),
bins=50, range=[[-plotrange, plotrange], [-plotrange, plotrange]])
plt.colorbar()
#pt_diff = (pt_pred - pt_truth)
plt.subplot(132)
plt.xlabel('recoil px [GeV]')
plt.hist(px_truth, bins=50, range=(-plotrange, plotrange),
histtype='step', label='truth')
plt.hist(px_pred, bins=50, range=(-plotrange, plotrange),
histtype='step', label='prediction DeepRecoil')
plt.hist(px_pred_pfmet, bins=50, range=(-plotrange, plotrange),
histtype='step', label='prediction pfmet')
plt.hist(px_pred_puppi, bins=50, range=(-plotrange, plotrange),
histtype='step', label='prediction hpuppimet')
plt.legend(loc='upper right')
plt.subplot(133)
plt.xlabel('bias px [GeV]')
plt.hist(px_truth, bins=50, range=(-plotrange, plotrange),
histtype='step', label='bias 0')
plt.hist(px_pred - px_truth, bins=50, range=(-plotrange, plotrange),
histtype='step', label='bias DeepRecoil')
plt.hist(px_pred_pfmet - px_truth, bins=50, range=(-plotrange,
plotrange), histtype='step', label='bias pfmet')
plt.hist(px_pred_puppi - px_truth, bins=50, range=(-plotrange,
plotrange), histtype='step', label='bias hpuppimet')
plt.legend(loc='upper right')
plt.savefig('%s/px.pdf' % path, bbox_inches='tight')
# In[155]:
# PY
plt.figure(figsize=(24, 6))
plt.subplot(131)
plt.xlabel('recoil py truth [GeV]')
plt.ylabel('recoil py DeepRecoil [GeV]')
#plt.scatter(py_truth, py_pred, s=0.25, c='w')
plt.hist2d(py_truth, py_pred, norm=LogNorm(),
bins=50, range=[[-plotrange, plotrange], [-plotrange, plotrange]])
plt.colorbar()
#pt_diff = (pt_pred - pt_truth)
plt.subplot(132)
plt.xlabel('recoil py [GeV]')
plt.hist(py_truth, bins=50, range=(-plotrange, plotrange),
histtype='step', label='truth')
plt.hist(py_pred, bins=50, range=(-plotrange, plotrange),
histtype='step', label='prediction DeepRecoil')
plt.hist(py_pred_pfmet, bins=50, range=(-plotrange, plotrange),
histtype='step', label='prediction pfmet')
plt.hist(py_pred_puppi, bins=50, range=(-plotrange, plotrange),
histtype='step', label='prediction hpuppimet')
plt.legend(loc='upper right')
plt.subplot(133)
plt.xlabel('bias py [GeV]')
plt.hist(py_truth, bins=50, range=(-plotrange, plotrange),
histtype='step', label='bias 0')
plt.hist(py_pred - py_truth, bins=50, range=(-plotrange, plotrange),
histtype='step', label='bias DeepRecoil')
plt.hist(py_pred_pfmet - py_truth, bins=50, range=(-plotrange,
plotrange), histtype='step', label='bias pfmet')
plt.hist(py_pred_puppi - py_truth, bins=50, range=(-plotrange,
plotrange), histtype='step', label='bias hpuppimet')
plt.legend(loc='upper right')
plt.savefig('%s/py.pdf' % path, bbox_inches='tight')
# PT
plt.figure(figsize=(14, 6))
plt.subplot(121)
plt.xlabel('Z pT truth [GeV]')
plt.ylabel('Z pT DeepRecoil [GeV]')
plt.hist2d(pt_truth, pt_pred, norm=LogNorm(),
bins=50, range=[[0, 2*plotrange], [0, 2*plotrange]])
plt.colorbar()
#pt_diff = (pt_pred - pt_truth)
plt.subplot(122)
plt.xlabel('Z pT bias [GeV]')
plt.hist(pt_truth, bins=50, range=(-plotrange, plotrange),
histtype='step', label='truth')
plt.hist(pt_pred, bins=50, range=(-plotrange, plotrange),
histtype='step', label='prediction DeepRecoil')
plt.hist(pt_pred - pt_truth, bins=50, range=(-plotrange, plotrange),
histtype='step', label='bias DeepRecoil')
plt.legend(loc='upper right')
plt.savefig('%s/pt.pdf' % path, bbox_inches='tight')
# UPAR
plt.figure(figsize=(30, 6))
plt.subplot(141)
plt.xlabel('Z pT truth [GeV]')
plt.ylabel('$u_{||}$ DNN [GeV]')
x = np.arange(0, 1*plotrange, 0.1)
plt.plot(x, x, color='red')
plt.hist2d(pt_truth, par_pred, norm=LogNorm(),
bins=50, range=[[0., 1*plotrange], [-0.5*plotrange, 1.5*plotrange]])
plt.colorbar()
plt.subplot(142)
plt.xlabel('Z pT truth [GeV]')
plt.ylabel('$u_{||}$ DNN - Z pT truth [GeV]')
x = np.arange(0, 3*plotrange, 0.1)
y = x*0
plt.plot(x, y, color='red')
plt.hist2d(pt_truth, par_pred-pt_truth, norm=LogNorm(),
bins=50, range=[[0., 1*plotrange], [-plotrange, plotrange]])
plt.colorbar()
plt.subplot(143)
plt.xlabel('Z pT DNN [GeV]')
plt.ylabel('$u_{||}$ DNN - Z pT truth [GeV]')
x = np.arange(0, 3*plotrange, 0.1)
y = x*0
plt.plot(x, y, color='red')
plt.hist2d(pt_pred, par_pred-pt_truth, norm=LogNorm(),
bins=50, range=[[0., 1*plotrange], [-plotrange, plotrange]])
plt.colorbar()
#pt_diff = (pt_pred - pt_truth)
plt.subplot(144)
plt.xlabel('$u_{||}$ bias [GeV]')
plt.hist(-pt_truth, bins=50, range=(-plotrange, plotrange),
histtype='step', label='bias 0')
plt.hist(par_pred - pt_truth, bins=50, range=(-plotrange,
plotrange), histtype='step', label='bias DNN')
plt.hist(par_pred_pfmet - pt_truth, bins=50, range=(-plotrange,
plotrange), histtype='step', label='bias pfmet')
plt.hist(par_pred_puppi - pt_truth, bins=50, range=(-plotrange,
plotrange), histtype='step', label='bias hpuppimet')
plt.hist(pt_truth, bins=50, range=(-plotrange, plotrange),
histtype='step', label='truth', linestyle='--', color='blue')
plt.hist(par_pred, bins=50, range=(-plotrange, plotrange),
histtype='step', label='prediction DNN', linestyle='--', color='orange')
plt.legend(loc='upper right')
plt.savefig('%s/upar.pdf' % path, bbox_inches='tight')
resp_dnn = []
resp_puppi = []
resp_pf = []
x_vals = []
step = 4.
n_steps = 25
for i in range(n_steps):
x_vals.append(step/2. + i*step)
resp_dnn.append(np.mean((par_pred/pt_truth)[np.logical_and(pt_truth < (i+1)*step, pt_truth > i*step)]))
resp_puppi.append(np.mean((par_pred_puppi/pt_truth)[np.logical_and(pt_truth < (i+1)*step, pt_truth > i*step)]))
resp_pf.append(np.mean((par_pred_pfmet/pt_truth)[np.logical_and(pt_truth < (i+1)*step, pt_truth > i*step)]))
plt.figure(figsize=(8, 6))
plt.plot(x_vals, resp_dnn, label='response DNN')
plt.plot(x_vals, resp_puppi, 'r:', label='response Puppi')
plt.plot(x_vals, resp_pf, 'k--', label='response PF')
Line2D([0, step*n_steps], [1, 1], ls=':', color='gray')
plt.xlabel('$q_{T}$ [GeV]')
plt.ylabel('$u_{||}/q_{T}$')
plt.legend(loc='lower right')
plt.savefig('%s/resp.pdf' % path, bbox_inches='tight')