-
Notifications
You must be signed in to change notification settings - Fork 1.2k
/
Copy pathmamba2_simple.py
200 lines (178 loc) · 7.43 KB
/
mamba2_simple.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
# Copyright (c) 2024, Tri Dao, Albert Gu.
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange, repeat
try:
from causal_conv1d import causal_conv1d_fn
except ImportError:
causal_conv1d_fn = None
try:
from mamba_ssm.ops.triton.layernorm_gated import RMSNorm as RMSNormGated, LayerNorm
except ImportError:
RMSNormGated, LayerNorm = None, None
from mamba_ssm.ops.triton.ssd_combined import mamba_chunk_scan_combined
from mamba_ssm.ops.triton.ssd_combined import mamba_split_conv1d_scan_combined
class Mamba2Simple(nn.Module):
def __init__(
self,
d_model,
d_state=64,
d_conv=4,
conv_init=None,
expand=2,
headdim=128,
ngroups=1,
A_init_range=(1, 16),
dt_min=0.001,
dt_max=0.1,
dt_init_floor=1e-4,
dt_limit=(0.0, float("inf")),
learnable_init_states=False,
activation="swish",
bias=False,
conv_bias=True,
# Fused kernel and sharding options
chunk_size=256,
use_mem_eff_path=True,
layer_idx=None, # Absorb kwarg for general module
device=None,
dtype=None,
):
factory_kwargs = {"device": device, "dtype": dtype}
super().__init__()
self.d_model = d_model
self.d_state = d_state
self.d_conv = d_conv
self.conv_init = conv_init
self.expand = expand
self.d_inner = self.expand * self.d_model
self.headdim = headdim
self.ngroups = ngroups
assert self.d_inner % self.headdim == 0
self.nheads = self.d_inner // self.headdim
self.dt_limit = dt_limit
self.learnable_init_states = learnable_init_states
self.activation = activation
self.chunk_size = chunk_size
self.use_mem_eff_path = use_mem_eff_path
self.layer_idx = layer_idx
# Order: [z, x, B, C, dt]
d_in_proj = 2 * self.d_inner + 2 * self.ngroups * self.d_state + self.nheads
self.in_proj = nn.Linear(self.d_model, d_in_proj, bias=bias, **factory_kwargs)
conv_dim = self.d_inner + 2 * self.ngroups * self.d_state
self.conv1d = nn.Conv1d(
in_channels=conv_dim,
out_channels=conv_dim,
bias=conv_bias,
kernel_size=d_conv,
groups=conv_dim,
padding=d_conv - 1,
**factory_kwargs,
)
if self.conv_init is not None:
nn.init.uniform_(self.conv1d.weight, -self.conv_init, self.conv_init)
# self.conv1d.weight._no_weight_decay = True
if self.learnable_init_states:
self.init_states = nn.Parameter(torch.zeros(self.nheads, self.headdim, self.d_state, **factory_kwargs))
self.init_states._no_weight_decay = True
self.act = nn.SiLU()
# Initialize log dt bias
dt = torch.exp(
torch.rand(self.nheads, **factory_kwargs) * (math.log(dt_max) - math.log(dt_min))
+ math.log(dt_min)
)
dt = torch.clamp(dt, min=dt_init_floor)
# Inverse of softplus: https://github.com/pytorch/pytorch/issues/72759
inv_dt = dt + torch.log(-torch.expm1(-dt))
self.dt_bias = nn.Parameter(inv_dt)
# Just to be explicit. Without this we already don't put wd on dt_bias because of the check
# name.endswith("bias") in param_grouping.py
self.dt_bias._no_weight_decay = True
# A parameter
assert A_init_range[0] > 0 and A_init_range[1] >= A_init_range[0]
A = torch.empty(self.nheads, dtype=torch.float32, device=device).uniform_(*A_init_range)
A_log = torch.log(A).to(dtype=dtype)
self.A_log = nn.Parameter(A_log)
# self.register_buffer("A_log", torch.zeros(self.nheads, dtype=torch.float32, device=device), persistent=True)
self.A_log._no_weight_decay = True
# D "skip" parameter
self.D = nn.Parameter(torch.ones(self.nheads, device=device))
self.D._no_weight_decay = True
# Extra normalization layer right before output projection
assert RMSNormGated is not None
self.norm = RMSNormGated(self.d_inner, eps=1e-5, norm_before_gate=False, **factory_kwargs)
self.out_proj = nn.Linear(self.d_inner, self.d_model, bias=bias, **factory_kwargs)
def forward(self, u, seq_idx=None):
"""
u: (B, L, D)
Returns: same shape as u
"""
batch, seqlen, dim = u.shape
zxbcdt = self.in_proj(u) # (B, L, d_in_proj)
A = -torch.exp(self.A_log) # (nheads) or (d_inner, d_state)
initial_states=repeat(self.init_states, "... -> b ...", b=batch) if self.learnable_init_states else None
dt_limit_kwargs = {} if self.dt_limit == (0.0, float("inf")) else dict(dt_limit=self.dt_limit)
if self.use_mem_eff_path:
# Fully fused path
out = mamba_split_conv1d_scan_combined(
zxbcdt,
rearrange(self.conv1d.weight, "d 1 w -> d w"),
self.conv1d.bias,
self.dt_bias,
A,
D=self.D,
chunk_size=self.chunk_size,
seq_idx=seq_idx,
activation=self.activation,
rmsnorm_weight=self.norm.weight,
rmsnorm_eps=self.norm.eps,
outproj_weight=self.out_proj.weight,
outproj_bias=self.out_proj.bias,
headdim=self.headdim,
ngroups=self.ngroups,
norm_before_gate=False,
initial_states=initial_states,
**dt_limit_kwargs,
)
else:
z, xBC, dt = torch.split(
zxbcdt, [self.d_inner, self.d_inner + 2 * self.ngroups * self.d_state, self.nheads], dim=-1
)
dt = F.softplus(dt + self.dt_bias) # (B, L, nheads)
assert self.activation in ["silu", "swish"]
# 1D Convolution
if causal_conv1d_fn is None or self.activation not in ["silu", "swish"]:
xBC = self.act(
self.conv1d(xBC.transpose(1, 2)).transpose(1, 2)
) # (B, L, self.d_inner + 2 * ngroups * d_state)
xBC = xBC[:, :seqlen, :]
else:
xBC = causal_conv1d_fn(
x=xBC.transpose(1, 2),
weight=rearrange(self.conv1d.weight, "d 1 w -> d w"),
bias=self.conv1d.bias,
activation=self.activation,
).transpose(1, 2)
# Split into 3 main branches: X, B, C
# These correspond to V, K, Q respectively in the SSM/attention duality
x, B, C = torch.split(xBC, [self.d_inner, self.ngroups * self.d_state, self.ngroups * self.d_state], dim=-1)
y = mamba_chunk_scan_combined(
rearrange(x, "b l (h p) -> b l h p", p=self.headdim),
dt,
A,
rearrange(B, "b l (g n) -> b l g n", g=self.ngroups),
rearrange(C, "b l (g n) -> b l g n", g=self.ngroups),
chunk_size=self.chunk_size,
D=self.D,
z=None,
seq_idx=seq_idx,
initial_states=initial_states,
**dt_limit_kwargs,
)
y = rearrange(y, "b l h p -> b l (h p)")
# Multiply "gate" branch and apply extra normalization layer
y = self.norm(y, z)
out = self.out_proj(y)
return out