-
Notifications
You must be signed in to change notification settings - Fork 0
/
ExactEquationsSpin1.tex
581 lines (476 loc) · 23.3 KB
/
ExactEquationsSpin1.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
\chapter{Exact equations of motion for spin-1}
\beq
\mathcal{L}
= -\frac{1}{2} (D^\mu W^\nu - D^\nu W^\mu)^\dagger (D_\mu W_\nu - D_\nu W_\mu)
+ m^2 W^{\mu \dagger} W_\mu - i \lambda e W^{\mu \dagger} W^\nu F_{\mu\nu}
\eeq
where as usual $D$ is the long derivative $D^\mu = \partial^\mu + ieA^\mu$.
Obtain the equations of motion from the Euler-Lagrange equations:
\[
\pd{\mathcal{L}}{W^{\dagger \alpha}} - \partial_\mu \pd{ \mathcal{L} }{ [\partial_\mu W^{\dagger \alpha}] } = 0
\]
Or equivalently, %TODO show this explicitly?
\[
\pd{\mathcal{L}}{W^{\dagger \alpha}} - D_\mu \pd{ \mathcal{L} }{ [D_\mu W^{\dagger \alpha}] } = 0
\]
\beqa
\pd{\mathcal{L}}{W^{\dagger \alpha}}
&=& \pd{}{W^{\dagger \alpha} } \left( m^2 W^{\mu \dagger} W_\mu - i \lambda e W^{\mu \dagger} W^\nu F_{\mu\nu} \right ) \\
&=& m^2 W_\alpha - i e \lambda W^\nu F_{\alpha \nu} \\
\eeqa
\beqa
\pd{ \mathcal{L} }{ [D_\gamma W^{\dagger \alpha}] }
&=& -\frac{1}{2} \pd{}{ [D_\gamma W^{\dagger \alpha}] } (D^\mu W^\nu - D^\nu W^\mu)^\dagger (D_\mu W_\nu - D_\nu W_\mu) \\
&=& -\frac{1}{2} ( g^{\mu \gamma} g^\nu_\alpha - g^{\nu\gamma} g^\mu_\alpha)(D_\mu W_\nu - D_\nu W_\mu) \\
&=& D_\alpha W^\gamma - D^\gamma W_\alpha
\eeqa
So the complete equation from Euler-Lagrange is
\beq \label{eq:ELeq}
m^2 W_\alpha - i e \lambda W^\nu F_{\alpha \nu} + D_\mu (D^\mu W_\alpha - D_\alpha W^\mu) = 0
\eeq
This is a set of four coupled second order equations for the field $W$. We rewrite as a set of first order equations by introducing a field $W_{\mu\nu} = D_\mu W_\nu - D_\nu W_\mu$. So \eqref{eq:ELeq} becomes
\beq
m^2 W_\alpha - i e \lambda W^\mu F_{\alpha \mu} + D^\mu W_{\mu\alpha} = 0
\eeq
%TODO add note about two three-vectors to form a bispinor with?
$W^{\mu\nu}$ is antisymmetric and so has six degrees of freedom, corresponding to six independent fields. Together with $W^\mu$ this represents a total of ten fields. However, upon examination only some of these fields are dynamic. The fields $W^{0i}$ and $W^{i}$ appear in the equations with time derivatives, while the fields $W^{ij}$ and $W^0$ never do. So it is only necessary to consider the former six fields. So that these six fields all have the same dimension, we will define $\frac{W^{i0}}{m} = i \eta^i$.
We will now eliminate the extraneous fields and solve for $iD_0 W^i$, $iD_0 \eta^i$.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\beq
m^2 W_\alpha - ie \lambda W^\nu F_{\alpha \nu} + D_\mu (D^\mu W_\alpha - D_\alpha W^\mu) = 0
\eeq
Define $W_{\mu\nu} = D_\mu W_\nu - D_\nu W_\mu$.
Then
\beq \label{eq:s1:EL1st}
m^2 W_\alpha - ie \lambda W^\nu F_{\alpha \nu} + D^\mu W_{\mu \alpha} = 0
\eeq
To get the exact Hamiltonian of a bispinor, we can eliminate nondynamic fields.
First consider \eqref{eq:s1:EL1st} with $\alpha=0$.
\beq
m^2 W_0 - i e \lambda W^\nu F_{0\nu} + D^\mu W_{\mu0}
\eeq
\beq
m^2 W_0 - i e \lambda W^j F_{0j} + D^j W_{j0}
\eeq
Solve this for $W_0$
\beq \label{eq:s1:w0}
W_0 = \frac{1}{m^2} \left( i e \lambda W^j F_{0j} - D^j W_{j0} \right )
\eeq
Now, consider \eqref{eq:s1:EL1st} with $\alpha=i$
\beq
m^2 W_i - ie \lambda W^\mu F_{i \mu} + D^\mu W_{\mu i} = 0
\eeq
\beq
m^2 W_i - ie \lambda W^0 F_{i 0} + D^0 W_{0 i} - ie \lambda W^j F_{i j} + D^j W_{j i}= 0
\eeq
Using \eqref{eq:s1:w0} we can replace $W_0$
\beq
m^2 W_i - \frac{i e \lambda}{m^2} \left( i e \lambda W^\nu F_{0\nu} - D^j W_{j0} \right ) F_{i 0} + D^0 W_{0 i} - ie \lambda W^j F_{i j} + D^j W_{j i}= 0
\eeq
Using $W_{ji} = D_j W_i - D_i W_j$
\beq
m^2 W_i - \frac{i e \lambda}{m^2} \left( i e \lambda W^\nu F_{0\nu} - D^j W_{j0} \right ) F_{i 0} + D^0 W_{0 i}
- ie \lambda W^j F_{i j} + D^j ( D_j W_i - D_i W_j ) = 0
\eeq
Solve this for $D^0 W_{0i}$:
\beq \label{eq:s1:w0i}
D^0 W_{0i} = - m^2 W_i + \frac{i e \lambda}{m^2} \left( i e \lambda W^\nu F_{0\nu} - D^j W_{j0} \right ) F_{i 0}
+ ie \lambda W^j F_{i j} - D^j ( D_j W_i - D_i W_j )
\eeq
To get a similar equation for $W_i$, consider
\beq
W_{i0} = D_i W_0 - D_0 W_i
\eeq
Then
\beq
D^0 W_i = D_i W_0 - W_{i0}
\eeq
\beq \label{eq:s1:wi}
D^0 W_i = D_i \frac{1}{m^2}\left( i e \lambda W^j F_{0j} - D^j W_{j0} \right ) - W_{i0}
\eeq
We now have equations that tell us the time evolution of a total of six fields: $W_i$ and $W_{i0}$. We want to treat these as the components of some sort of bispinor. To that end, first define $\eta_i = -i/m W_{i0}$ so that we have a pair of fields with the same mass dimension and hermiticity. (Since $W_{i0} = D_i W_0 - D_0 W_i$ would pick up another minus sign under complex conjugation compared to $W_i$.) Going the other way $W_{i0} = im \eta_i$.
Since eventually we want a nonrelativistic expression, we should write the spatial components of four vectors as three vectors. To that end also write the components of the tensor $F_{\mu\nu}$ in terms of three vectors.
$$ F_{0i} = E^i , \; F_{ij} = -\epsilon_{ijk} B^k $$
Regular spatial vectors are ``naturally raised" while $D_i$ is ``naturally lowered". Then we can rewrite \eqref{eq:s1:w0i}.
%TODO define D_i and \v{D}
\beq
-im D_0 \eta_i = - m^2 W_i - \frac{i e \lambda}{m^2} \left( i e \lambda W^j E^j - D^j W_{j0} \right ) E^i
+ ie \lambda W^j \epsilon_{ijk} B^k - D^j ( D_j W_i - D_i W_j )
\eeq
\beq
i D_0 \eta^i = m W^i + \frac{i e \lambda}{m^3} \left( i e \lambda W^j E^j - D^j W_{j0} \right ) E^i
- \frac{ie \lambda}{m} W^j \epsilon_{ijk} B^k + \frac{1}{m}D_j ( D_j W^i - D_i W^j )
\eeq
And likewise \eqref{eq:s1:wi} becomes
\beq
D^0 W_i = D_i \frac{1}{m^2}\left( -i e \lambda W^j E^j - im D^j \eta_j \right ) - im \eta_i
\eeq
\beq
i D^0 W^i = - i D_i \frac{1}{m^2}\left( -i e \lambda W^j E^j - i m D_j \eta^j \right ) + m \eta^i
\eeq
\beq
i D^0 W^i= -\frac{1}{m^2} D_i e \lambda \v{W} \cdot \v{E} - \frac{1}{m} D_i \v{D} \cdot \v{\eta} + m \eta^i
\eeq
\subsubsection{Spin identities}
To obtain some Schrodinger like equation for a bispinor, we need to express the time derivative of the bispinor in terms of other operators which can be interpreted as the Hamiltonian: $i \partial_0 \Psi = \hat{H} \Psi$. We have expressions for the time derivatives of $W_i$ and $\eta_i$, but some mixing of the indices is involved. To write the Hamiltonian in a block form we can introduce spin matrices whose action will mix the components of the fields.
The spin matrix for a spin one particle can represented as:
\beq
(S^k)_{ij} = - i\epsilon_{ijk}
\eeq
which leads to the following identities:
\beq
(\v{a} \times \v{v})_i = -i (\v{S} \cdot \v{a})_{ij} v_j
\eeq
\beq
\{ \v{a} \times (\v{a} \times \v{v}) \}_i = - ( \{\v{S} \cdot \v{a}\}^2)_{ij} v_j
\eeq
\beq
a_i (\v{b} \cdot \v{v}) = \{ \v{a} \cdot \v{b} \; \delta_{ij} - (S^k S^\ell)_{ij} a^\ell b^k \} v_j
\eeq
Using these identities
\beq
i D^0 \v{W}= -\frac{e \lambda}{m^2} \v{D} (\v{W} \cdot \v{E}) + \frac{1}{m} \v{D} (\v{D} \cdot \gv{\eta}) + m \gv{\eta}
\eeq
\beq
i D^0 \v{W} =
-\frac{1}{m^2} \{ \v{D} \cdot \v{E} - (\v{S} \cdot \v{E}) (\v{S} \cdot \v{D}) \} \v{W}
+ \frac{1}{m}\{ \v{D}^2 - (\v{S} \cdot \v{D})^2 \} \gv{\eta} + m \gv{\eta}
\eeq
and for the other equation
\beq
i D_0 \eta^i = m W^i - \frac{i e \lambda}{m^3} \left( i e \lambda W^j E^j - D^j W_{j0} \right ) E^i
+ \frac{ie \lambda}{m} W^j \epsilon_{ijk} B^k - \frac{1}{m}D_j ( D_j W^i - D_i W^j )
\eeq
\beq
i D_0 \eta^i = m W^i - \frac{i e \lambda}{m^3} \left( i e \lambda W^j E^j - D^j W_{j0} \right ) E^i
+ \frac{ie \lambda}{m} W^j \epsilon_{ijk} B^k - \frac{1}{m}D_j ( D_j W^i - D_i W^j )
\eeq
\beq
i D_0 \gv{\eta} = m \v{W}
+ \frac{e^2 \lambda^2}{m^3} \v{E} (\v{W} \cdot \v{E} )
- \frac{1}{m^2} \v{E} (\v{D} \cdot \gv{\eta})
+ \frac{i e \lambda}{m} (\v{W} \times \v{B} )
+\frac{1}{m} \v{D} \times (\v{D} \times \v{W} )
\eeq
%TODO check order of D and E -- it matters!
\beq
i D_0 \gv{\eta} = m \v{W}
+ \frac{e^2 \lambda^2}{m^3} \{ \v{E}^2 - (\v{S} \cdot \v{E})^2 \} \v{W}
-\frac{1}{m^2} \{ \v{E} \cdot \v{D} - (\v{S} \cdot \v{E}) (\v{S} \cdot \v{D}) \} \gv{\eta}
+ \frac{ e \lambda}{m} (\v{S} \cdot \v{B} ) \v{W}
- \frac{1}{m} (\v{S} \cdot \v{D})^2 \v{W}
\eeq
\beq
i D_0 \gv{\eta} = \left(
m
+ \frac{e^2 \lambda^2}{m^3} \{ \v{E}^2 - (\v{S} \cdot \v{E})^2 \}
- \frac{ e \lambda}{m} (\v{S} \cdot \v{B} )
- \frac{1}{m} (\v{S} \cdot \v{D})^2
\right ) \v{W}
+\frac{1}{m^2} \{ \v{E} \cdot \v{D} - (\v{S} \cdot \v{E}) (\v{S} \cdot \v{D}) \} \gv{\eta}
\eeq
Now that the equations are in the correct form, we can write them as follows:
%%TODO This is the correct form, but go back and make sure equations leading up to this don't have sign errors
%% Also, add the spin ids that produce the cross products.
\beq
i D_0 \spinor{W}{\eta} =
\Mblock
{ \lambda \frac{e}{m^2} \left [ \v{E} \cdot \v{D} - (\v{S} \cdot \v{E})( \v{S} \cdot \v{D}) + i \v{S} \cdot \v{E} \times \v{D} \right ] }
{m
-\frac{1}{m} (\v{S} \cdot \v{D})^2
- \lambda \frac{e}{m} \v{S} \cdot \v{B}
+ \lambda^2 \frac{e^2}{m^3} \left [ \v{E}^2 - (\v{S} \cdot \v{E})^2 \right ] }
{ m
- \frac{1}{m}\left [ \v{D}^2 - (\v{S} \cdot \v{D})^2 + e \v{S} \cdot \v{B} \right ] }
{ - \lambda \frac{e}{m^2} \left [ \v{D} \cdot \v{E} - (\v{S} \cdot \v{D}) (\v{S} \cdot \v{E}) + i \v{S} \cdot \v{D} \times \v{E} \right ] }\eeq
\subsubsection{Current}
We can also derive the conserved current from the Lagrangian:
\begin{eqnarray*}
\mathcal{L}
&=& -\frac{1}{2} (D \times W)^\dagger \cdot (D \times W)
+ m_w^2 W^\dagger W
-\lambda i e {W^\dagger}^\mu W^\nu F_{\mu \nu} \\
\end{eqnarray*}
Where
\begin{eqnarray*}
D^\mu = \partial^\mu - i e A^\mu ,
&&
D \times W = D^\mu W^\nu - D^\nu W^\mu
\end{eqnarray*}
We want the conserved current corresponding to the transformation $ W_i \to e^{i \alpha}W_i $, which in infinitesimal form is:
\begin{equation*}
W_\mu \to W_\mu + i \alpha W_\mu, \;
W_\mu^\dagger \to W_\mu^\dagger - i \alpha W_\mu^{\dagger}
\end{equation*}
The 4-current density will be:
\begin{equation*}
j^{\sigma} = -i \pd {\mathcal{L} }{W_{\mu, \sigma}} W_\mu + i\pd {\mathcal{L} }{W^\dagger_{\mu, \sigma}} W^\dagger_\mu
\end{equation*}
Only one term contains derivatives of the field:
\begin{eqnarray*}
\pd {\mathcal{L} }{W_{\alpha, \sigma}}
&=& \pd{}{W_{\alpha, \sigma}} \left \{ - \frac{1}{2} (D_\mu W_\nu - D_\nu W_\mu)^\dagger(D^\mu W^\nu - D^\nu W^\mu) \right \}\\
&=& - \frac{1}{2} (D_\mu W_\nu - D_\nu W_\mu)^\dagger (g_{\sigma \mu} g_{\alpha \nu} - g_{\sigma \nu}g_{\alpha \mu})\\
&=& - (D_\alpha W_\sigma - D_\sigma W_\alpha)^\dagger
\end{eqnarray*}
Likewise:
\begin{eqnarray*}
\pd {\mathcal{L} }{W_{\alpha, \sigma}^\dagger}
&=& - (D_\alpha W_\sigma - D_\sigma W_\alpha)
\end{eqnarray*}
If we define $W_{\mu \nu} = D^\mu W^\nu - D^\nu W^\mu$ then the 4-current and charge density are:
\begin{eqnarray*}
j_\sigma &=& i W_{\sigma \mu}^\dagger W^{\mu} - i W_{\sigma \mu} {W^{\dagger}}^\mu \\
j_0 &=& i W_{0 \mu}^\dagger W^{\mu} - i W_{0 \mu} {W^{\dagger}}^\mu \\
&=& i W_{0 i}^\dagger W^i - i W_{0 i} {W^{\dagger}}^i \\
\end{eqnarray*}
Where the last equality follows from the antisymmetry of $W_{\mu \nu}$.
Now, we defined the fields $\eta_i = -i \frac{W_{i0}}{m}$. In terms of these fields,
$j_0 = m (\eta_i^\dagger W^i + \eta_i {W^\dagger}^i )$.
We can do the same to find the vector part of the current.
\begin{eqnarray*}
j_i &=& i W_{i \mu}^\dagger W^{\mu} - i W_{i \mu} {W^{\dagger}}^\mu \\
&=& i W_j^\dagger W_{ij} + i W_{i0}^\dagger W_0 + c.c.
\end{eqnarray*}
We have $W_{ij} = D_i W_j - D_j W_i$. Using the identities developed in the appendix, we can obtain
\[ D_j W_i = D_i W_j - D_k(S_i S_k)_{ja} W_a \]
Then
\[ W_{ij} = D_k (S_i S_k)_{ja} W_a \]
In the absence of an electric field E, $W_{0} = \frac{i}{m} D_j \eta_j$, with $W_{i0} = i m \eta_i$.
\[ W_{i0}^\dagger W_0 = - \eta_i^\dagger D_j \eta_j \]
Again we introduce spin matrices to get the equation in the desired form, and obtain
\[ W_{i0}^\dagger W_0 = - \eta_j^\dagger D_k (\delta_{ik} - S_k S_i) \eta_j \]
This leads to
\[ j_i = i W_j^\dagger D_k (S_i S_k W)_j - i \eta_j^\dagger D_k ([\delta_{ik} - S_k S_i]\eta)_j + c.c. \]
Writing this in terms of the bispinor $\begin{pmatrix}\eta \\ W\end{pmatrix}$, the expression for the current is
\begin{equation} j_i =
\frac{i}{2} \begin{pmatrix}\eta^\dagger && W^\dagger \end{pmatrix} \left [
(\{S_i, S_j\} - \delta_{ij})
\begin{pmatrix}
1 & 0 \\
0 & 1 \\
\end{pmatrix}
- ([S_i, S_j] +\delta_{ij}) \begin{pmatrix} 1 & 0 \\ 0 & -1 \\ \end{pmatrix}
\right ]
D_j \begin{pmatrix}\eta \\ W\end{pmatrix} + c.c.
\end{equation}
\subsubsection{Hermiticity of Hamiltonian}
It's clear from inspection that the above Hamiltonian is not Hermitian in the standard sense. (Of the operators in use, the only one which is not self adjoint is $D_i^\dagger = - D_i$.) Noticing that
\[
\left [ \v{E} \cdot \v{D} - (\v{S} \cdot \v{E})( \v{S} \cdot \v{D}) + i \v{S} \cdot \v{E} \times \v{D} \right]^\dagger
= - \left [ \v{D} \cdot \v{E} - (\v{S} \cdot \v{D}) (\v{S} \cdot \v{E}) + i \v{S} \cdot \v{D} \times \v{E} \right ]
\]
we can see it has the general form
\[
H =
\begin{pmatrix}
A & B \\
C & A^\dagger
\end{pmatrix}
\]
where the off diagonal blocks are Hermitian in the normal sense: $B^\dagger = B$ and $C^\dagger=C$.
At this point we should consider that an operator is defined as Hermitian with respect to a particular inner product. In quantum mechanics this inner product is normally defined as:
\[ \langle \Psi, \phi \rangle = \int d^3x \Psi^\dagger \phi \]
This definition, however, does not produce sensible results for the states in question. We need the inner product of a state with itself to be conserved; in other words, it should play the role of a conserved charge. From the considerations above we already have one such quantity: the conserved charge $\int d^3x j_0$, where
\[
j_0 = m [\eta^\dagger W + W^\dagger \eta]
= m \begin{pmatrix} \eta^\dagger & W^\dagger \end{pmatrix}
\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}
\begin{pmatrix} \eta \\ W \end{pmatrix}
\]
A more general definition of the inner product includes some weight M:
\[ \langle \Psi, \phi \rangle = \int d^3x \Psi^\dagger M \phi \]
In normal quantum mechanics M would be the identity matrix, but here, as implied by the charge density, we want $M=\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$. Such a definition will lead to the inner product $<\Psi, \Psi>$ being conserved.
An operator H is hermitian with respect to this inner product if
\[ \langle H\Psi, \phi \rangle = \langle \Psi, H\phi \rangle \to
\int d^3x \Psi^\dagger H^\dagger M \phi = \int d^3x \Psi^\dagger M H \phi
\]
For this equality to hold, it is sufficient for $H^\dagger M = M H$. With $M=\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ and $H=\begin{pmatrix} A & B \\ C & D \end{pmatrix}$ this condition reduces to
\[
\begin{pmatrix} A^\dagger & C^\dagger \\ B^\dagger & D^\dagger \end{pmatrix}
=\begin{pmatrix} D & C \\ B & A \end{pmatrix}
\]
Our Hamiltonian fulfills exactly this requirement, and so is Hermitian with respect to this particular inner product.
\subsection{Non-relativistic Hamiltonian}
Now we will consider the non-relativistic limit of the above Hamiltonian. To work in this regime constrains the order of both the momentum and the electromagnetic field strength.
\begin{eqnarray*}
D &\sim& mv \\
\Phi &\sim& mv^2 \\
E &\sim& m^2v^3 \\
B &\sim& m^2v^2
\end{eqnarray*}
We can write the Hamiltonian matrix in terms of the basis of 2x2 Hermitian matrices: $({\bf I}, \rho_i)$:
\begin{eqnarray*}
H &=& a_0 {\bf I} + a_i \rho_i \\
a_0 &=&
\frac{1}{2}(H_{11}+H_{22}) =
e\Phi +
\lambda \frac{e}{2m^2}
\left [
\v{E} \cdot \v{D} - (\v{S} \cdot \v{E})( \v{S} \cdot \v{D}) + i \v{S} \cdot \v{E} \times \v{D}
- \v{D} \cdot \v{E} + (\v{S} \cdot \v{D}) (\v{S} \cdot \v{E}) - i \v{S} \cdot \v{D} \times \v{E}
\right ]\\
a_3 &=&
\frac{1}{2}(H_{11}-H_{22}) =
\lambda s\frac{e}{2m^2} \left [
\v{E} \cdot \v{D} - (\v{S} \cdot \v{E})( \v{S} \cdot \v{D}) + i \v{S} \cdot \v{E} \times \v{D}
+ \v{D} \cdot \v{E} - (\v{S} \cdot \v{D}) (\v{S} \cdot \v{E}) + i \v{S} \cdot \v{D} \times \v{E}
\right ]\\
ia_2 &=&
\frac{1}{2}(H_{21}-H_{12}) =
-\left [
\frac{\v{D}^2}{2m} - \frac{1}{m} (\v{S} \cdot \v{D})^2
-\frac{\lambda-1}{2} \frac{e}{m} \v{S} \cdot \v{B}
+ \frac{e^2}{2m^3}(\v{E}^2 -(\v{S}\cdot\v{E})^2)
\right ] \\
a_1 &=&
\frac{1}{2}(H_{12}-H_{21}) =
\left [
m - \frac{\v{D}^2}{2m} - \frac{1+\lambda}{2}\frac{e}{m}\v{S} \cdot \v{B}
+ \frac{e^2}{2m^3}(\v{E}^2 -(\v{S}\cdot\v{E})^2)
\right ]
\end{eqnarray*}
We can see that to leading order, the Hamiltonian is
\begin{equation*}
H = m \rho_1 =
\begin{pmatrix}
0 & m \\
m & 0 \\
\end{pmatrix}
\end{equation*}
Since we wish to separate positive and negative energy states, this poses a problem. So we first switch to a basis where at least the rest energies are separate. Then, remaining off-diagonal elements can be treated as perturbations.
An appropriate transformation which meets our requirements is a "rotation" in the space spanned by $\rho_i$ matrices, about the $\rho_1 + \rho_3$ axis. This has the explicit form:
\begin{equation}
U =\frac{1}{\sqrt {2}} (\rho_1 + \rho_3)
= \frac{1}{\sqrt {2}}
\begin{pmatrix}
1 & 1 \\
1 & -1 \\
\end{pmatrix}
\end{equation}
Any transformation U can be described by it's action on the basis of 4x4 matrices. This takes:
\begin{eqnarray*}
{\bf I} & \to & {\bf I} \\
\rho_1 & \to & \rho_3 \\
\rho_3 & \to & \rho_1 \\
\rho_2 & \to & -\rho_2 \\
\begin{pmatrix}
\eta \\ W
\end{pmatrix}
& \to &
\begin{pmatrix}
\Psi_u \\ \Psi_\ell
\end{pmatrix}
= \frac{1}{\sqrt{2}}
\begin{pmatrix}
\eta + W \\ \eta - W
\end{pmatrix}
\end{eqnarray*}
(This transformation will transform the current to
\[ j_0 = m (\Psi_u^\dagger \Psi_u - \Psi_\ell^\dagger \Psi_\ell) \]
and the weight M, used in the inner product, to
\[ M \to M' = U^\dagger M U = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \]
The transformed Hamiltonian will of course be Hermitian with respect to the transformed inner product.)
Our equation is now of the following form:
\begin{eqnarray*}
i\partial_0 \begin{pmatrix} \Psi_u \\ \Psi_\ell \end{pmatrix}
& =&
H' \begin{pmatrix} \Psi_u \\ \Psi_\ell \end{pmatrix}
\end{eqnarray*}
We can see that the Hamiltonian still contains off-diagonal elements, so this represents a pair of coupled equations for the upper and lower components of $\gv{\Psi}$. But the off-diagonal terms are small, so we can consider the case where $\Psi_\ell$ is small compared to $\Psi_u$. Solving for $\Psi_\ell$ in terms of $\Psi_u$:
\begin{eqnarray*}
E \Psi_\ell &=& H'_{21} \Psi_u + H'_{22} \Psi_\ell \\
\Psi_\ell &=& (E - H'_{22})^{-1} H'_{21} \Psi_u
\end{eqnarray*}
This gives the exact formula:
\begin{eqnarray*}
E \Psi_u &=& \left( H'_{11} + H'_{12}[E-H'_{22}]^{-1} H'_{21} \right) \Psi_u
\end{eqnarray*}
However, we only need corrections to the magnetic moment of order $v^2$. With $\frac{e}{m}\v{S} \cdot \v{B} \sim mv^2$, this means we only need the Hamiltonian to at most order $mv^4$. Examining the leading order terms of the matrix H', the diagonal elements are order m while the off-diagonal elements are order $mv^2$. To leading order the term $[E-H'_{22}]^{-1}=\frac{1}{2m}$. So we'll need $H'_{11}$ to $\mathcal{O}(v^4)$, and $H'_{12}$, $H'_{21}$, and $[E-H'_{22}]^{-1}$ each to only leading order.
\[ E \Psi_u = \left( H'_{11} + \frac{1}{2m}H'_{12} H'_{21} + \mathcal{O}(mv^6)\right) \Psi_u \]
The needed terms of H are, using $\lambda=g-1$
\begin{eqnarray*}
H'_{11} = a_0+ a_3
&=& m + e\Phi - \frac{D^2}{2m} - \frac{g}{2}\frac{e}{m} \v{S} \cdot \v{B} \\
&& +(g-1)\frac{e}{2m^2}
\left [
\v{E} \cdot \v{D} - (\v{S} \cdot \v{E})( \v{S} \cdot \v{D}) + i \v{S} \cdot \v{E} \times \v{D}
- \v{D} \cdot \v{E} + (\v{S} \cdot \v{D}) (\v{S} \cdot \v{E}) - i \v{S} \cdot \v{D} \times \v{E}
\right ]
+\mathcal{O}(mv^6) \\
H'_{12} = a_1 - ia_2
&=& \frac{D^2}{2m} - \frac{1}{m}(\v{S} \cdot \v{D})^2 - \frac{g-2}{2}\frac{e}{m} \v{S} \cdot \v{B}
+\mathcal{O}(mv^4) \\
H'_{21} = a_1 + ia_2
&=& -\frac{D^2}{2m} + \frac{1}{m}(\v{S} \cdot \v{D})^2 + \frac{g-2}{2}\frac{e}{m} \v{S} \cdot \v{B}
+\mathcal{O}(mv^4)
\end{eqnarray*}
The product $H'_{12}H'_{21}$ is calculated in the appendix. To first order in the magnetic field strength it is:
\begin{eqnarray*}
\frac{1}{2m}H'_{12}H'_{21}
&=& -\frac{1}{2m^3}\left( \frac {\v{D}^2} {2} - (\v{S} \cdot \v{D})^2 - \frac{g-2}{2} e\v{S} \cdot \v{B} \right )^2 \\
&=& -\frac{1}{2m^3}\left(
\frac{ \gv{\pi}^4 } {4} - e \v{p}^2 \v{S} \cdot \v{B}
-\frac{g-2}{2}e (\v{S} \cdot \v{p}) (\v{B} \cdot \v{p})
\right)
\end{eqnarray*}
So finally,replacing all $\v{D}$ with $\gv{\pi} \equiv \v{p} - e \v{A}$, we have a direct expression for $\Psi_u$:
\begin{eqnarray*}
E \Psi_u
&=&\left \{ m + e\Phi + \frac{\pi^2}{2m} - \frac{g}{2}\frac{e}{m} \v{S} \cdot \v{B}
- \frac{\pi^4 } {8m^3}
+ \frac{ e \v{p}^2 (\v{S} \cdot \v{B}) }{2m^3}
+ (g-2)\frac{e}{4m^3} (\v{S} \cdot \v{p}) (\v{B} \cdot \v{p})
\right . \\
&& \left .
+ (g-1)\frac{ie}{2m^2} \left [
\v{E} \cdot \gv{\pi} - (\v{S} \cdot \v{E}) (\v{S} \cdot \gv{\pi}) + i \v{S} \cdot \v{E} \times \gv{\pi}
- \gv{\pi} \cdot \v{E} + (\v{S} \cdot \gv{\pi}) (\v{S} \cdot \v{E}) - i \v{S} \cdot \gv{\pi} \times \v{E}
\right ]
\right \}\Psi_u
\end{eqnarray*}
The complicated expression in square brackets can be cleaned up a bit:
\begin{eqnarray*}
\v{E} \cdot \gv{\pi} - \gv{\pi} \cdot \v{E}
&=& [E_i, \pi_i] \\
&=& [E_i, -i\partial_i] \\
&=& i(\partial_i E_i) \\
(\v{S} \cdot \v{E}) (\v{S} \cdot \gv{\pi}) - (\v{S} \cdot \gv{\pi}) (\v{S} \cdot \v{E})
&=& S_i S_j E_i \pi_j - S_i S_j \pi_i E_j \\
&=& (S_i S_j) (E_i \pi_j - E_j \pi_i - [\pi_i, E_j]) \\
&=& [S_i, S_j](E_i \pi_j) - (S_i S_j)(-i \nabla_i E_j) \\
&=& (i\epsilon_{ijk}S_k)E_j \pi_i - (S_i S_j)(-i \nabla_i E_j) \\
&=& i \v{S} \cdot \v{E} \times \gv{\pi} + i S_i S_j \nabla_i E_j) \\
(\v{E} \times \gv{\pi} - \gv{\pi} \times \v{E})_k
&=& \epsilon_{ijk}(E_i \pi_j - \pi_i E_j) \\
&=& \epsilon_{ijk}(E_i \pi_j + \pi_j E_i) \\
&=& \epsilon_{ijk}(2 E_i \pi_j + [\pi_i, E_j]) \\
&=& 2 \epsilon_{ijk} E_i \pi_j \\
&=& 2 (\v{E} \times \gv{\pi})_k
\end{eqnarray*}
Using these identities and collecting terms, and then writing everything in terms of $g$, $g-2$
\begin{eqnarray*}
E \Psi_u
&=&\left\{ m + e\Phi + \frac{\pi^2}{2m} - \frac{\pi^4 } {8m^3}
- \frac{e}{m} \v{S} \cdot \v{B} \left ( \frac{g}{2} - \frac{p^2}{2m^2} \right )
+ (g-2)\frac{e}{4m^3} (\v{S} \cdot \v{p}) (\v{B} \cdot \v{p}) \right. \\
&& \left.
- (g-1)\frac{e}{2m^2}
\left [
\v{\nabla} \cdot \v{E}
- S_i S_j \nabla_i E_j +\v{S} \cdot \v{E} \times \gv{\pi}
\right ]
\right\}\Psi_u \\
&=& \left\{ m + e\Phi + \frac{\pi^2}{2m} - \frac{\pi^4 } {8m^3}
- \frac{g}{2}\frac{e}{m} \v{S} \cdot \v{B} \left ( 1 - \frac{p^2}{2m^2} \right )
- \frac{g-2}{2} \frac{e}{m} \frac{p^2}{2m^2} \v{S} \cdot \v{B}
+ (g-2)\frac{e}{4m^3} (\v{S} \cdot \v{p}) (\v{B} \cdot \v{p}) \right. \\
&& \left.
- \left ( \frac{g}{2} + \frac{g-2}{2} \right) \frac{e}{2m^2}
\left [
\v{\nabla} \cdot \v{E}
- S_i S_j \nabla_i E_j +\v{S} \cdot \v{E} \times \gv{\pi}
\right ]
\right\}\Psi_u
\end{eqnarray*}
We have a Hamiltonian for the upper component of the bispinor, as desired. But is it truly Schrodinger-like? In the general case we would need to perform the Foldy-Wouthyusen transformation, to a representation where all the physics up to the desired order is contained in the single spinor equation. But we can show that, at the order we are working at, the Hamiltonian above is correct.