-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathreadfile.cpp
295 lines (267 loc) · 12 KB
/
readfile.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
/*****************************************************************************/
/* This is the program skeleton for homework 2 in CSE167 by Ravi Ramamoorthi */
/* Extends HW 1 to deal with shading, more transforms and multiple objects */
/*****************************************************************************/
/*****************************************************************************/
// This file is readfile.cpp. It includes helper functions for matrix
// transformations for a stack (matransform) and to rightmultiply the
// top of a stack. These functions are given to aid in setting up the
// transformations properly, and to use glm functions in the right way.
// Their use is optional in your program.
// The functions readvals and readfile do basic parsing. You can of course
// rewrite the parser as you wish, but we think this basic form might be
// useful to you. It is a very simple parser.
// Please fill in parts that say YOUR CODE FOR HW 2 HERE.
// Read the other parts to get a context of what is going on.
/*****************************************************************************/
#include "readfile.h"
using namespace std;
// You may not need to use the following two functions, but it is provided
// here for convenience
// The function below applies the appropriate transform to a 4-vector
void ReadFile::matransform(stack<mat4> &transfstack, float* values)
{
mat4 transform = transfstack.top();
vec4 valvec = vec4(values[0],values[1],values[2],values[3]);
vec4 newval = transform * valvec;
for (int i = 0; i < 4; i++) values[i] = newval[i];
}
void ReadFile::rightmultiply(const mat4 & M, stack<mat4> &transfstack)
{
mat4 &T = transfstack.top();
T = T * M;
}
// Function to read the input data values
// Use is optional, but should be very helpful in parsing.
bool ReadFile::readvals(stringstream &s, const int numvals, float* values)
{
for (int i = 0; i < numvals; i++) {
s >> values[i];
if (s.fail()) {
cout << "Failed reading value " << i << " will skip\n";
return false;
}
}
return true;
}
std::unique_ptr<Scene> ReadFile::readfile(const char* filename)
{
float ambient[3]={ 0,0,0 };
float diffuse[3]={ 0,0,0 };
float specular[3]={ 0,0,0 };
float emission[3] = { 0,0,0 };
float shininess;
std::unique_ptr<Scene> scene = std::make_unique<Scene>();
int maxvertices;
int vertexCounter = 0;
std::unique_ptr<Vertex[]> localVertices = std::make_unique <Vertex[]>(1);
string str, cmd;
ifstream in;
in.open(filename);
if (in.is_open()) {
stack <mat4> transfstack;
transfstack.push(mat4(1.0));
getline (in, str);
while (in) {
if ((str.find_first_not_of(" \t\r\n") != string::npos) && (str[0] != '#')) {
stringstream s(str);
s >> cmd;
int i;
float values[10]; // Position and color for light, colors for others
bool validinput; // Validity of input
if (cmd == "point" || cmd == "directional") {
if (scene->numused == scene->numLights) { // No more Lights
cerr << "Reached Maximum Number of Lights " << scene->numused << " Will ignore further lights\n";
}
else {
validinput = readvals(s, 6, values); // Position/color for lts.
if (validinput) {
LightType type = LightType::point;
if (cmd == "directional") {
type = LightType::directional;
}
scene->lights[scene->numused] = Light(values[0], values[1], values[2], values[3], values[4], values[5], type);
scene->numused++;
}
}
}
else if (cmd == "maxverts") {
validinput = readvals(s, 1, values);
if (validinput) {
maxvertices = values[0];
localVertices = std::make_unique <Vertex[]>(maxvertices);
}
}
else if (cmd == "vertex") {
validinput = readvals(s, 3, values);
if (validinput) {
localVertices[vertexCounter] = Vertex(values[0], values[1], values[2]);
vertexCounter++;
}
}
else if (cmd == "tri" || cmd == "sphere")
{
if (scene->numobjects == scene->maxobjects) { // No more objects
cerr << "Reached Maximum Number of Objects " << scene->numobjects << " Will ignore further objects\n";
}
else {
if (cmd == "sphere") {
validinput = readvals(s, 4, values);
if(validinput)
scene->objects[scene->numobjects] = new Sphere(vec3(values[0], values[1], values[2]), values[3]);
}
else { // if triangle
validinput = readvals(s, 3, values);
if (validinput)
scene->objects[scene->numobjects] = new Triangle(localVertices[values[0]], localVertices[values[1]], localVertices[values[2]]);
}
if (validinput) {
Object* obj = scene->objects[scene->numobjects];
for (i = 0; i < 3; i++) {
(obj->ambient)[i] = ambient[i];
(obj->diffuse)[i] = diffuse[i];
(obj->specular)[i] = specular[i];
(obj->emission)[i] = emission[i];
obj->shininess = shininess;
}
obj->transform = transfstack.top();
obj->inverseTransform = inverse(obj->transform);
obj->inverseTransposedTransform = inverse(transpose(obj->transform));
obj->transposedInverseTransform = transpose(obj->inverseTransform);
scene->numobjects++;
}
}
}
else if (cmd == "output") {
s >> scene->output_filename;
}
else if (cmd == "maxdepth") {
validinput = readvals(s, 1, values);
if (validinput) {
scene->maxdepth = values[0];
}
}
else if (cmd == "attenuation") {
validinput = readvals(s, 3, values);
if (validinput) {
scene->attenuation = vec3(values[0], values[1], values[2]);
}
}
else if (cmd == "ambient") {
validinput = readvals(s, 3, values); // colors
if (validinput) {
for (i = 0; i < 3; i++) {
ambient[i] = values[i];
}
}
}
else if (cmd == "diffuse") {
validinput = readvals(s, 3, values);
if (validinput) {
for (i = 0; i < 3; i++) {
diffuse[i] = values[i];
}
}
}
else if (cmd == "specular") {
validinput = readvals(s, 3, values);
if (validinput) {
for (i = 0; i < 3; i++) {
specular[i] = values[i];
}
}
}
else if (cmd == "emission") {
validinput = readvals(s, 3, values);
if (validinput) {
for (i = 0; i < 3; i++) {
emission[i] = values[i];
}
}
}
else if (cmd == "shininess") {
validinput = readvals(s, 1, values);
if (validinput) {
shininess = values[0];
}
}
else if (cmd == "size") {
validinput = readvals(s, 2, values);
if (validinput) {
scene->width = (int)values[0]; scene->height = (int)values[1];
}
}
else if (cmd == "camera") {
validinput = readvals(s, 10, values);
if (validinput) {
float lookfromx = values[0];
float lookfromy = values[1];
float lookfromz = values[2];
float lookatx = values[3];
float lookaty = values[4];
float lookatz = values[5];
float upx = values[6];
float upy = values[7];
float upz = values[8];
float fovy = values[9];
scene->mainCamera = Camera(vec3(lookfromx, lookfromy, lookfromz), vec3(lookatx, lookaty, lookatz), vec3(upx, upy, upz), fovy);
}
}
else if (cmd == "translate") {
validinput = readvals(s, 3, values);
if (validinput) {
float tx = values[0];
float ty = values[1];
float tz = values[2];
mat4 translateMatrix = Transform::translate(tx, ty, tz);
rightmultiply(translateMatrix, transfstack);
}
}
else if (cmd == "scale") {
validinput = readvals(s, 3, values);
if (validinput) {
float scalex = values[0];
float scaley = values[1];
float scalez = values[2];
mat4 scaleMatrix = Transform::scale(scalex, scaley, scalez);
rightmultiply(scaleMatrix, transfstack);
}
}
else if (cmd == "rotate") {
validinput = readvals(s, 4, values);
if (validinput) {
float rotatex = values[0];
float rotatey = values[1];
float rotatez = values[2];
float angle = values[3];
vec3 axis = glm::normalize(vec3(rotatex, rotatey, rotatez));
mat3 rotateMatrix = Transform::rotate(angle, axis);
mat4 rotateMat4x4(rotateMatrix); //convertion from 3x3 to 4x4
rightmultiply(rotateMat4x4, transfstack);
}
}
else if (cmd == "pushTransform") {
transfstack.push(transfstack.top());
}
else if (cmd == "popTransform") {
if (transfstack.size() <= 1) {
cerr << "Stack has no elements. Cannot Pop\n";
}
else {
transfstack.pop();
}
}
else {
cerr << "Unknown Command: " << cmd << " Skipping \n";
}
}
getline(in, str);
}
} else {
cerr << "Unable to Open Input Data File " << filename << "\n";
throw 2;
}
scene->aspectRatio = (float)scene->width / (float)scene->height;
scene->mainCamera.SetupFovx(scene->aspectRatio);
return std::move(scene);
}