-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathObject.cpp
156 lines (113 loc) · 3.56 KB
/
Object.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
#include "Object.h"
const float gEps = 1e-6f;
int sgn(float x) { return x > gEps ? 1 : x < -gEps ? -1 : 0; }
bool Sphere::GetIntersection(const Ray rayIn, float& out_t, vec3& out_n, vec3& out_p) {
float min_t = 0.000001f;
float max_t = INFINITY;
float t = INFINITY;
vec4 orig_ = vec4(rayIn.origin, 1.0f);
vec4 dir_ = vec4(rayIn.direction, 0.0f);
orig_ = inverseTransform * orig_;
dir_ = inverseTransform * dir_;
vec3 orig = vec3(orig_.x / orig_.w, orig_.y / orig_.w, orig_.z / orig_.w);
vec3 dir = normalize(vec3(dir_.x, dir_.y, dir_.z));
float c2 = glm::dot(dir, dir);
float c1 = 2.0f * glm::dot(dir, orig - center);
float c0 = glm::dot(orig - center, orig - center) - radius * radius;
float delta = c1 * c1 - 4.0f * c2 * c0;
if (delta < -gEps) {
return false;
}
delta = fabs(delta);
// closest intersection point
float x = std::min((-c1 - sqrt(delta)) / (2.0f * c2),
(-c1 + sqrt(delta)) / (2.0f * c2));
if (x < 1e-3f) {
if (x > 0) {
}
return false;
}
t = x;
vec3 p_Transformed = orig + dir * t;
vec4 p_Homogeneous = transform * vec4(p_Transformed, 1.0f); //Transforming back
vec3 p = vec3(p_Homogeneous.x / p_Homogeneous.w, p_Homogeneous.y / p_Homogeneous.w, p_Homogeneous.z / p_Homogeneous.w);
vec3 n_Transformed = p_Transformed - center;
vec4 n_tr = inverseTransposedTransform * vec4(n_Transformed, 0.0f);
vec3 n = normalize(vec3(n_tr.x, n_tr.y, n_tr.z));
t = length(p - rayIn.origin);
out_n = n;
out_t = t;
out_p = p;
return true;
}
bool Triangle::GetIntersection(const Ray rayIn, float& out_t, vec3& out_n, vec3& out_p) {
float kEpsilon = 1e-8f;
Ray ray = rayIn;
vec3 orig = rayIn.origin;
vec3 dir = rayIn.direction;
vec4 A_ = transform * vec4(vertices[0].x, vertices[0].y, vertices[0].z, 1.0f);
vec4 B_ = transform * vec4(vertices[1].x, vertices[1].y, vertices[1].z, 1.0f);
vec4 C_ = transform * vec4(vertices[2].x, vertices[2].y, vertices[2].z, 1.0f);
vec3 A = vec3(A_ / A_.w);
vec3 B = vec3(B_ / B_.w);
vec3 C = vec3(C_ / C_.w);
vec3 AB = B - A;
vec3 AC = C - A;
vec3 m_Normal = cross(AB, AC);
float norm_norm = dot(m_Normal, m_Normal);
float area_full_triangle = length(m_Normal);
vec3 normal = normalize(m_Normal);
float dN = dot(m_Normal, dir); //if perpendicular, then the ray is parallel with the plane of the triangle
if (abs(dN) < kEpsilon)
return false;
float d = dot(m_Normal, A);
float t = (d - dot(m_Normal, orig)) / dN;
if (t < 0) //check if behind the cam
return false;
float u;
float v;
vec3 P = orig + (dir * t);
vec3 C_C;
vec3 AP = P - A;
//edge 0
C_C = cross(AB, AP);
if (dot(m_Normal, C_C) < 0)
return false; //P is on the right side
//edge1
vec3 edge1 = C - B;
vec3 BP = P - B;
C_C = cross(edge1, BP);
if (u = dot(m_Normal, C_C) < 0)
return false; //P is on the right side
//edge2
vec3 edge2 = A - C;
vec3 CP = P - C;
C_C = cross(edge2, CP);
if (v = dot(m_Normal, C_C) < 0)
return false; //P is on the right side
u /= norm_norm;
v /= norm_norm;
vec4 trp = transform * vec4(P, 1.0f);
out_p = P;
out_n = normal;
out_t = t;
return true;
}
bool Sphere::solveQuadratic(const float& a, const float& b, const float& c, float& x0, float& x1)
{
float discr = b * b - 4 * a * c;
if (discr < 0) return false;
else if (discr == 0) x0 = x1 = -0.5f * b / a;
else {
float tempPosX = -b + sqrt(discr);
float tempNegX = -b - sqrt(discr);
float twoA = 2 * a;
x0 = tempPosX / twoA;
x1 = tempNegX / twoA;
}
if (x0 > x1) std::swap(x0, x1);
return true;
}
float Sphere::GetDiscriminant(float a, float b, float c) {
return b * b - 4 * a * c;
}