-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathparse_scores.py
42 lines (36 loc) · 1.61 KB
/
parse_scores.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
import pandas as pd
import numpy as np
suffix= 'var2'
datasets = ['celeba']
sups = ['unsup', 'sup']
dfs, fps = [], []
for dataset in datasets:
for sup in sups:
fp = f'/deep/group/disentangle/gs_results/scores/all_{dataset}_{sup}_{suffix}.csv'
df = pd.read_csv(fp)
fps.append(fp)
dfs.append(df)
# rank,score,n_clust,decoder,dataset,type,timestamp,run_name
for fp, df in zip(fps, dfs):
df = df.drop_duplicates(['run_name'], keep='last')
df = df.sort_values(by=['dataset', 'score'], ascending=False).reset_index(drop=True)
df['rank'] = df.index
means = df.groupby(['decoder'], as_index=False).agg({'score':[np.mean, np.std], 'n_clust': [np.median]}).sort_values(('score', 'mean'), ascending=False).reset_index(drop=True)
means['rank'] = means.index
means = means.round(2)
mfp = fp.replace('all', 'means')
means.to_csv(mfp, index=False)
"""
csvpathall = f'/deep/group/disentangle/gs_results/scores/all_dsprites_unsup_{suffix}.csv'
df = pd.read_csv(csvpathall)
df = df.drop_duplicates(['dataset', 'decoder'], keep='last')
n_clusts = [5,6]
for n_clust in n_clusts:
df = df[df['n_clust'] == n_clust].groupby(['decoder'], as_index=False).agg({'score':[np.mean, np.std], 'n_clust': [np.median]}).sort_values(('score', 'mean'), ascending=False).reset_index(drop=True)
df['rank'] = df.index
df = df.round(2)
fp = f'/deep/group/disentangle/gs_results/scores/means_n_clust_{n_clust}_dsprites_unsup_{suffix}.csv'
df.to_csv(fp, index=False)
print(f'Go to /deep/group/disentangle/gs_results/scores/ with {suffix} on means_ prefixed csvs')
import pdb;pdb.set_trace()
"""